Cargando…

Identification and functional analysis of pistil self-incompatibility factor HT-B of Petunia

Gametophytic self-incompatibility (GSI) in Solanaceae, Rosaceae, and Plantaginaceae is controlled by a multiallelic S-locus. The specificities of pistil and pollen are controlled by separate S-locus genes, S-RNase and SLF/SFB, respectively. Although the S-specificity is determined by the S-locus gen...

Descripción completa

Detalles Bibliográficos
Autores principales: Puerta, Alejandro Raul, Ushijima, Koichiro, Koba, Takato, Sassa, Hidenori
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2657546/
https://www.ncbi.nlm.nih.gov/pubmed/19282427
http://dx.doi.org/10.1093/jxb/erp005
Descripción
Sumario:Gametophytic self-incompatibility (GSI) in Solanaceae, Rosaceae, and Plantaginaceae is controlled by a multiallelic S-locus. The specificities of pistil and pollen are controlled by separate S-locus genes, S-RNase and SLF/SFB, respectively. Although the S-specificity is determined by the S-locus genes, factors located outside the S-locus are also required for expression of GSI. HT-B is one of the pistil non-S-factors identified in Nicotiana and Solanum, and encodes a small asparagine/aspartate-rich extracellular protein with unknown biochemical function. Here, HT-B was cloned from Petunia and characterized. The structural features and expression pattern of Petunia HT-B were very similar to those of Nicotiana and Solanum. Unlike other solanaceous species, expression of HT-B was also observed in self-compatible Petunia species. RNA interference (RNAi)-mediated suppression of Petunia HT-B resulted in partial breakdown of GSI. Quantitative analysis of the HT-B mRNA accumulation in the transgenics showed that a 100-fold reduction is not sufficient and a >1000-fold reduction is required to achieve partial breakdown of GSI.