Cargando…
Exploring and dissecting genome-wide gene expression responses of Penicillium chrysogenum to phenylacetic acid consumption and penicillinG production
BACKGROUND: Since the discovery of the antibacterial activity of penicillin by Fleming 80 years ago, improvements of penicillin titer were essentially achieved by classical strain improvement through mutagenesis and screening. The recent sequencing of Penicillium chrysogenum strain Wisconsin1255-54...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2657799/ https://www.ncbi.nlm.nih.gov/pubmed/19203396 http://dx.doi.org/10.1186/1471-2164-10-75 |
_version_ | 1782165617806147584 |
---|---|
author | Harris, Diana M van der Krogt, Zita A Klaassen, Paul Raamsdonk, Leonie M Hage, Susanne van den Berg, Marco A Bovenberg, Roel AL Pronk, Jack T Daran, Jean-Marc |
author_facet | Harris, Diana M van der Krogt, Zita A Klaassen, Paul Raamsdonk, Leonie M Hage, Susanne van den Berg, Marco A Bovenberg, Roel AL Pronk, Jack T Daran, Jean-Marc |
author_sort | Harris, Diana M |
collection | PubMed |
description | BACKGROUND: Since the discovery of the antibacterial activity of penicillin by Fleming 80 years ago, improvements of penicillin titer were essentially achieved by classical strain improvement through mutagenesis and screening. The recent sequencing of Penicillium chrysogenum strain Wisconsin1255-54 and the availability of genomics tools such as DNA-microarray offer new perspective. RESULTS: In studies on β-lactam production by P. chrysogenum, addition and omission of a side-chain precursor is commonly used to generate producing and non-producing scenarios. To dissect effects of penicillinG production and of its side-chain precursor phenylacetic acid (PAA), a derivative of a penicillinG high-producing strain without a functional penicillin-biosynthesis gene cluster was constructed. In glucose-limited chemostat cultures of the high-producing and cluster-free strains, PAA addition caused a small reduction of the biomass yield, consistent with PAA acting as a weak-organic-acid uncoupler. Microarray-based analysis on chemostat cultures of the high-producing and cluster-free strains, grown in the presence and absence of PAA, showed that: (i) Absence of a penicillin gene cluster resulted in transcriptional upregulation of a gene cluster putatively involved in production of the secondary metabolite aristolochene and its derivatives, (ii) The homogentisate pathway for PAA catabolism is strongly transcriptionally upregulated in PAA-supplemented cultures (iii) Several genes involved in nitrogen and sulfur metabolism were transcriptionally upregulated under penicillinG producing conditions only, suggesting a drain of amino-acid precursor pools. Furthermore, the number of candidate genes for penicillin transporters was strongly reduced, thus enabling a focusing of functional analysis studies. CONCLUSION: This study demonstrates the usefulness of combinatorial transcriptome analysis in chemostat cultures to dissect effects of biological and process parameters on gene expression regulation. This study provides for the first time clear-cut target genes for metabolic engineering, beyond the three genes of the β-lactam pathway. |
format | Text |
id | pubmed-2657799 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-26577992009-03-19 Exploring and dissecting genome-wide gene expression responses of Penicillium chrysogenum to phenylacetic acid consumption and penicillinG production Harris, Diana M van der Krogt, Zita A Klaassen, Paul Raamsdonk, Leonie M Hage, Susanne van den Berg, Marco A Bovenberg, Roel AL Pronk, Jack T Daran, Jean-Marc BMC Genomics Research Article BACKGROUND: Since the discovery of the antibacterial activity of penicillin by Fleming 80 years ago, improvements of penicillin titer were essentially achieved by classical strain improvement through mutagenesis and screening. The recent sequencing of Penicillium chrysogenum strain Wisconsin1255-54 and the availability of genomics tools such as DNA-microarray offer new perspective. RESULTS: In studies on β-lactam production by P. chrysogenum, addition and omission of a side-chain precursor is commonly used to generate producing and non-producing scenarios. To dissect effects of penicillinG production and of its side-chain precursor phenylacetic acid (PAA), a derivative of a penicillinG high-producing strain without a functional penicillin-biosynthesis gene cluster was constructed. In glucose-limited chemostat cultures of the high-producing and cluster-free strains, PAA addition caused a small reduction of the biomass yield, consistent with PAA acting as a weak-organic-acid uncoupler. Microarray-based analysis on chemostat cultures of the high-producing and cluster-free strains, grown in the presence and absence of PAA, showed that: (i) Absence of a penicillin gene cluster resulted in transcriptional upregulation of a gene cluster putatively involved in production of the secondary metabolite aristolochene and its derivatives, (ii) The homogentisate pathway for PAA catabolism is strongly transcriptionally upregulated in PAA-supplemented cultures (iii) Several genes involved in nitrogen and sulfur metabolism were transcriptionally upregulated under penicillinG producing conditions only, suggesting a drain of amino-acid precursor pools. Furthermore, the number of candidate genes for penicillin transporters was strongly reduced, thus enabling a focusing of functional analysis studies. CONCLUSION: This study demonstrates the usefulness of combinatorial transcriptome analysis in chemostat cultures to dissect effects of biological and process parameters on gene expression regulation. This study provides for the first time clear-cut target genes for metabolic engineering, beyond the three genes of the β-lactam pathway. BioMed Central 2009-02-10 /pmc/articles/PMC2657799/ /pubmed/19203396 http://dx.doi.org/10.1186/1471-2164-10-75 Text en Copyright © 2009 Harris et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Harris, Diana M van der Krogt, Zita A Klaassen, Paul Raamsdonk, Leonie M Hage, Susanne van den Berg, Marco A Bovenberg, Roel AL Pronk, Jack T Daran, Jean-Marc Exploring and dissecting genome-wide gene expression responses of Penicillium chrysogenum to phenylacetic acid consumption and penicillinG production |
title | Exploring and dissecting genome-wide gene expression responses of Penicillium chrysogenum to phenylacetic acid consumption and penicillinG production |
title_full | Exploring and dissecting genome-wide gene expression responses of Penicillium chrysogenum to phenylacetic acid consumption and penicillinG production |
title_fullStr | Exploring and dissecting genome-wide gene expression responses of Penicillium chrysogenum to phenylacetic acid consumption and penicillinG production |
title_full_unstemmed | Exploring and dissecting genome-wide gene expression responses of Penicillium chrysogenum to phenylacetic acid consumption and penicillinG production |
title_short | Exploring and dissecting genome-wide gene expression responses of Penicillium chrysogenum to phenylacetic acid consumption and penicillinG production |
title_sort | exploring and dissecting genome-wide gene expression responses of penicillium chrysogenum to phenylacetic acid consumption and penicilling production |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2657799/ https://www.ncbi.nlm.nih.gov/pubmed/19203396 http://dx.doi.org/10.1186/1471-2164-10-75 |
work_keys_str_mv | AT harrisdianam exploringanddissectinggenomewidegeneexpressionresponsesofpenicilliumchrysogenumtophenylaceticacidconsumptionandpenicillingproduction AT vanderkrogtzitaa exploringanddissectinggenomewidegeneexpressionresponsesofpenicilliumchrysogenumtophenylaceticacidconsumptionandpenicillingproduction AT klaassenpaul exploringanddissectinggenomewidegeneexpressionresponsesofpenicilliumchrysogenumtophenylaceticacidconsumptionandpenicillingproduction AT raamsdonkleoniem exploringanddissectinggenomewidegeneexpressionresponsesofpenicilliumchrysogenumtophenylaceticacidconsumptionandpenicillingproduction AT hagesusanne exploringanddissectinggenomewidegeneexpressionresponsesofpenicilliumchrysogenumtophenylaceticacidconsumptionandpenicillingproduction AT vandenbergmarcoa exploringanddissectinggenomewidegeneexpressionresponsesofpenicilliumchrysogenumtophenylaceticacidconsumptionandpenicillingproduction AT bovenbergroelal exploringanddissectinggenomewidegeneexpressionresponsesofpenicilliumchrysogenumtophenylaceticacidconsumptionandpenicillingproduction AT pronkjackt exploringanddissectinggenomewidegeneexpressionresponsesofpenicilliumchrysogenumtophenylaceticacidconsumptionandpenicillingproduction AT daranjeanmarc exploringanddissectinggenomewidegeneexpressionresponsesofpenicilliumchrysogenumtophenylaceticacidconsumptionandpenicillingproduction |