Cargando…

Influence of parasite encoded inhibitors of serine peptidases in early infection of macrophages with Leishmania major

Ecotin is a potent inhibitor of family S1A serine peptidases, enzymes lacking in the protozoan parasite Leishmania major. Nevertheless, L. major has three ecotin-like genes, termed inhibitor of serine peptidase (ISP). ISP1 is expressed in vector-borne procyclic and metacyclic promastigotes, whereas...

Descripción completa

Detalles Bibliográficos
Autores principales: Eschenlauer, Sylvain C P, Faria, Marilia S, Morrison, Lesley S, Bland, Nicolas, Ribeiro-Gomes, Flavia L, DosReis, George A, Coombs, Graham H, Lima, Ana Paula C A, Mottram, Jeremy C
Formato: Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2659362/
https://www.ncbi.nlm.nih.gov/pubmed/19016791
http://dx.doi.org/10.1111/j.1462-5822.2008.01243.x
Descripción
Sumario:Ecotin is a potent inhibitor of family S1A serine peptidases, enzymes lacking in the protozoan parasite Leishmania major. Nevertheless, L. major has three ecotin-like genes, termed inhibitor of serine peptidase (ISP). ISP1 is expressed in vector-borne procyclic and metacyclic promastigotes, whereas ISP2 is also expressed in the mammalian amastigote stage. Recombinant ISP2 inhibited neutrophil elastase, trypsin and chymotrypsin with K(i)s between 7.7 and 83 nM. L. major ISP2–ISP3 double null mutants (Δisp2/3) were created. These grew normally as promastigotes, but were internalized by macrophages more efficiently than wild-type parasites due to the upregulation of phagocytosis by a mechanism dependent on serine peptidase activity. Δisp2/3 promastigotes transformed to amastigotes, but failed to divide for 48 h. Intracellular multiplication of Δisp2/3 was similar to wild-type parasites when serine peptidase inhibitors were present, suggesting that defective intracellular growth results from the lack of serine peptidase inhibition during promastigote uptake. Δisp2/3 mutants were more infective than wild-type parasites to BALB/c mice at the early stages of infection, but became equivalent as the infection progressed. These data support the hypothesis that ISPs of L. major target host serine peptidases and influence the early stages of infection of the mammalian host.