Cargando…
Su(z)2 Antagonizes Auto-Repression of Myc in Drosophila, Increasing Myc Levels and Subsequent Trans-Activation
All tumor cell lines that have been tested are defective for Myc auto-repression, and have high levels of Myc produced from wild type loci and re-arranged loci. Like mammalian Myc auto-repression, Myc protein represses the expression of its gene, dmyc, in Drosophila. This activity requires Polycomb...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2659448/ https://www.ncbi.nlm.nih.gov/pubmed/19333393 http://dx.doi.org/10.1371/journal.pone.0005076 |
_version_ | 1782165678737850368 |
---|---|
author | Khan, Abid Shover, Wesley Goodliffe, Julie M. |
author_facet | Khan, Abid Shover, Wesley Goodliffe, Julie M. |
author_sort | Khan, Abid |
collection | PubMed |
description | All tumor cell lines that have been tested are defective for Myc auto-repression, and have high levels of Myc produced from wild type loci and re-arranged loci. Like mammalian Myc auto-repression, Myc protein represses the expression of its gene, dmyc, in Drosophila. This activity requires Polycomb (Pc), since RNAi for Pc in the embryo eliminates Myc auto-repression. We have observed that upon depletion of Polycomb in the embryo, levels of one of 18 different chromatin-binding genetic regulators, Su(z)2, rise dramatically. We pursued the possibility that increased levels of this protein, Su(z)2, interfere with Myc auto-repression, potentially explaining the loss of auto-repression upon Pc RNAi. We report that embryos expressing both ectopic Myc and ectopic Su(z)2 fail in Myc auto-repression. Surprisingly, histone H3K27 tri-methylation at the dmyc locus is inversely correlated with the presence of auto-repression. We show phenotypic consequences of potent dmyc auto-repression, and their complete reversal by ectopic Su(z)2: dmyc auto-repression induced a diminutive (dm) phenotype, and upon elimination of auto-repression by Su(z)2, overall levels of Myc increased and completely rescued the phenotype. We show that this increase in Myc levels caused dramatic activation of Myc activation targets. These data suggest that Su(z)2 is capable of increasing the potency of Myc activity by eliminating Myc's feedback regulation by auto-repression. Although Su(z)2 eliminated Myc auto-repression, we found that Myc repression of other genes is not affected by Su(z)2. These data suggest a unique antagonistic role for Su(z)2 in Myc auto-repression, and a potential mechanism for cancer-cell specific loss of Myc auto-repression. |
format | Text |
id | pubmed-2659448 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-26594482009-03-31 Su(z)2 Antagonizes Auto-Repression of Myc in Drosophila, Increasing Myc Levels and Subsequent Trans-Activation Khan, Abid Shover, Wesley Goodliffe, Julie M. PLoS One Research Article All tumor cell lines that have been tested are defective for Myc auto-repression, and have high levels of Myc produced from wild type loci and re-arranged loci. Like mammalian Myc auto-repression, Myc protein represses the expression of its gene, dmyc, in Drosophila. This activity requires Polycomb (Pc), since RNAi for Pc in the embryo eliminates Myc auto-repression. We have observed that upon depletion of Polycomb in the embryo, levels of one of 18 different chromatin-binding genetic regulators, Su(z)2, rise dramatically. We pursued the possibility that increased levels of this protein, Su(z)2, interfere with Myc auto-repression, potentially explaining the loss of auto-repression upon Pc RNAi. We report that embryos expressing both ectopic Myc and ectopic Su(z)2 fail in Myc auto-repression. Surprisingly, histone H3K27 tri-methylation at the dmyc locus is inversely correlated with the presence of auto-repression. We show phenotypic consequences of potent dmyc auto-repression, and their complete reversal by ectopic Su(z)2: dmyc auto-repression induced a diminutive (dm) phenotype, and upon elimination of auto-repression by Su(z)2, overall levels of Myc increased and completely rescued the phenotype. We show that this increase in Myc levels caused dramatic activation of Myc activation targets. These data suggest that Su(z)2 is capable of increasing the potency of Myc activity by eliminating Myc's feedback regulation by auto-repression. Although Su(z)2 eliminated Myc auto-repression, we found that Myc repression of other genes is not affected by Su(z)2. These data suggest a unique antagonistic role for Su(z)2 in Myc auto-repression, and a potential mechanism for cancer-cell specific loss of Myc auto-repression. Public Library of Science 2009-03-31 /pmc/articles/PMC2659448/ /pubmed/19333393 http://dx.doi.org/10.1371/journal.pone.0005076 Text en Khan et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Khan, Abid Shover, Wesley Goodliffe, Julie M. Su(z)2 Antagonizes Auto-Repression of Myc in Drosophila, Increasing Myc Levels and Subsequent Trans-Activation |
title | Su(z)2 Antagonizes Auto-Repression of Myc in Drosophila, Increasing Myc Levels and Subsequent Trans-Activation |
title_full | Su(z)2 Antagonizes Auto-Repression of Myc in Drosophila, Increasing Myc Levels and Subsequent Trans-Activation |
title_fullStr | Su(z)2 Antagonizes Auto-Repression of Myc in Drosophila, Increasing Myc Levels and Subsequent Trans-Activation |
title_full_unstemmed | Su(z)2 Antagonizes Auto-Repression of Myc in Drosophila, Increasing Myc Levels and Subsequent Trans-Activation |
title_short | Su(z)2 Antagonizes Auto-Repression of Myc in Drosophila, Increasing Myc Levels and Subsequent Trans-Activation |
title_sort | su(z)2 antagonizes auto-repression of myc in drosophila, increasing myc levels and subsequent trans-activation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2659448/ https://www.ncbi.nlm.nih.gov/pubmed/19333393 http://dx.doi.org/10.1371/journal.pone.0005076 |
work_keys_str_mv | AT khanabid suz2antagonizesautorepressionofmycindrosophilaincreasingmyclevelsandsubsequenttransactivation AT shoverwesley suz2antagonizesautorepressionofmycindrosophilaincreasingmyclevelsandsubsequenttransactivation AT goodliffejuliem suz2antagonizesautorepressionofmycindrosophilaincreasingmyclevelsandsubsequenttransactivation |