Cargando…

Development and evaluation of new mask protocols for gene expression profiling in humans and chimpanzees

BACKGROUND: Cross-species gene expression analyses using oligonucleotide microarrays designed to evaluate a single species can provide spurious results due to mismatches between the interrogated transcriptome and arrayed probes. Based on the most recent human and chimpanzee genome assemblies, we dev...

Descripción completa

Detalles Bibliográficos
Autores principales: Toleno, Donna M, Renaud, Gabriel, Wolfsberg, Tyra G, Islam, Munirul, Wildman, Derek E, Siegmund, Kimberly D, Hacia, Joseph G
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2660304/
https://www.ncbi.nlm.nih.gov/pubmed/19265541
http://dx.doi.org/10.1186/1471-2105-10-77
_version_ 1782165709733756928
author Toleno, Donna M
Renaud, Gabriel
Wolfsberg, Tyra G
Islam, Munirul
Wildman, Derek E
Siegmund, Kimberly D
Hacia, Joseph G
author_facet Toleno, Donna M
Renaud, Gabriel
Wolfsberg, Tyra G
Islam, Munirul
Wildman, Derek E
Siegmund, Kimberly D
Hacia, Joseph G
author_sort Toleno, Donna M
collection PubMed
description BACKGROUND: Cross-species gene expression analyses using oligonucleotide microarrays designed to evaluate a single species can provide spurious results due to mismatches between the interrogated transcriptome and arrayed probes. Based on the most recent human and chimpanzee genome assemblies, we developed updated and accessible probe masking methods that allow human Affymetrix oligonucleotide microarrays to be used for robust genome-wide expression analyses in both species. In this process, only data from oligonucleotide probes predicted to have robust hybridization sensitivity and specificity for both transcriptomes are retained for analysis. RESULTS: To characterize the utility of this resource, we applied our mask protocols to existing expression data from brains, livers, hearts, testes, and kidneys derived from both species and determined the effects probe numbers have on expression scores of specific transcripts. In all five tissues, probe sets with decreasing numbers of probes showed non-linear trends towards increased variation in expression scores. The relationships between expression variation and probe number in brain data closely matched those observed in simulated expression data sets subjected to random probe masking. However, there is evidence that additional factors affect the observed relationships between gene expression scores and probe number in tissues such as liver and kidney. In parallel, we observed that decreasing the number of probes within probe sets lead to linear increases in both gained and lost inferences of differential cross-species expression in all five tissues, which will affect the interpretation of expression data subject to masking. CONCLUSION: We introduce a readily implemented and updated resource for human and chimpanzee transcriptome analysis through a commonly used microarray platform. Based on empirical observations derived from the analysis of five distinct data sets, we provide novel guidelines for the interpretation of masked data that take the number of probes present in a given probe set into consideration. These guidelines are applicable to other customized applications that involve masking data from specific subsets of probes.
format Text
id pubmed-2660304
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-26603042009-03-25 Development and evaluation of new mask protocols for gene expression profiling in humans and chimpanzees Toleno, Donna M Renaud, Gabriel Wolfsberg, Tyra G Islam, Munirul Wildman, Derek E Siegmund, Kimberly D Hacia, Joseph G BMC Bioinformatics Methodology Article BACKGROUND: Cross-species gene expression analyses using oligonucleotide microarrays designed to evaluate a single species can provide spurious results due to mismatches between the interrogated transcriptome and arrayed probes. Based on the most recent human and chimpanzee genome assemblies, we developed updated and accessible probe masking methods that allow human Affymetrix oligonucleotide microarrays to be used for robust genome-wide expression analyses in both species. In this process, only data from oligonucleotide probes predicted to have robust hybridization sensitivity and specificity for both transcriptomes are retained for analysis. RESULTS: To characterize the utility of this resource, we applied our mask protocols to existing expression data from brains, livers, hearts, testes, and kidneys derived from both species and determined the effects probe numbers have on expression scores of specific transcripts. In all five tissues, probe sets with decreasing numbers of probes showed non-linear trends towards increased variation in expression scores. The relationships between expression variation and probe number in brain data closely matched those observed in simulated expression data sets subjected to random probe masking. However, there is evidence that additional factors affect the observed relationships between gene expression scores and probe number in tissues such as liver and kidney. In parallel, we observed that decreasing the number of probes within probe sets lead to linear increases in both gained and lost inferences of differential cross-species expression in all five tissues, which will affect the interpretation of expression data subject to masking. CONCLUSION: We introduce a readily implemented and updated resource for human and chimpanzee transcriptome analysis through a commonly used microarray platform. Based on empirical observations derived from the analysis of five distinct data sets, we provide novel guidelines for the interpretation of masked data that take the number of probes present in a given probe set into consideration. These guidelines are applicable to other customized applications that involve masking data from specific subsets of probes. BioMed Central 2009-03-05 /pmc/articles/PMC2660304/ /pubmed/19265541 http://dx.doi.org/10.1186/1471-2105-10-77 Text en Copyright © 2009 Toleno et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Methodology Article
Toleno, Donna M
Renaud, Gabriel
Wolfsberg, Tyra G
Islam, Munirul
Wildman, Derek E
Siegmund, Kimberly D
Hacia, Joseph G
Development and evaluation of new mask protocols for gene expression profiling in humans and chimpanzees
title Development and evaluation of new mask protocols for gene expression profiling in humans and chimpanzees
title_full Development and evaluation of new mask protocols for gene expression profiling in humans and chimpanzees
title_fullStr Development and evaluation of new mask protocols for gene expression profiling in humans and chimpanzees
title_full_unstemmed Development and evaluation of new mask protocols for gene expression profiling in humans and chimpanzees
title_short Development and evaluation of new mask protocols for gene expression profiling in humans and chimpanzees
title_sort development and evaluation of new mask protocols for gene expression profiling in humans and chimpanzees
topic Methodology Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2660304/
https://www.ncbi.nlm.nih.gov/pubmed/19265541
http://dx.doi.org/10.1186/1471-2105-10-77
work_keys_str_mv AT tolenodonnam developmentandevaluationofnewmaskprotocolsforgeneexpressionprofilinginhumansandchimpanzees
AT renaudgabriel developmentandevaluationofnewmaskprotocolsforgeneexpressionprofilinginhumansandchimpanzees
AT wolfsbergtyrag developmentandevaluationofnewmaskprotocolsforgeneexpressionprofilinginhumansandchimpanzees
AT islammunirul developmentandevaluationofnewmaskprotocolsforgeneexpressionprofilinginhumansandchimpanzees
AT wildmandereke developmentandevaluationofnewmaskprotocolsforgeneexpressionprofilinginhumansandchimpanzees
AT siegmundkimberlyd developmentandevaluationofnewmaskprotocolsforgeneexpressionprofilinginhumansandchimpanzees
AT haciajosephg developmentandevaluationofnewmaskprotocolsforgeneexpressionprofilinginhumansandchimpanzees