Cargando…

Symmetric and Transitive Registration of Image Sequences

This paper presents a method for constructing symmetric and transitive algorithms for registration of image sequences from image registration algorithms that do not have these two properties. The method is applicable to both rigid and nonrigid registration and it can be used with linear or periodic...

Descripción completa

Detalles Bibliográficos
Autores principales: Škrinjar, Oskar, Bistoquet, Arnaud, Tagare, Hemant
Formato: Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2660404/
https://www.ncbi.nlm.nih.gov/pubmed/19325927
http://dx.doi.org/10.1155/2008/686875
Descripción
Sumario:This paper presents a method for constructing symmetric and transitive algorithms for registration of image sequences from image registration algorithms that do not have these two properties. The method is applicable to both rigid and nonrigid registration and it can be used with linear or periodic image sequences. The symmetry and transitivity properties are satisfied exactly (up to the machine precision), that is, they always hold regardless of the image type, quality, and the registration algorithm as long as the computed transformations are invertable. These two properties are especially important in motion tracking applications since physically incorrect deformations might be obtained if the registration algorithm is not symmetric and transitive. The method was tested on two sequences of cardiac magnetic resonance images using two different nonrigid image registration algorithms. It was demonstrated that the transitivity and symmetry errors of the symmetric and transitive modification of the algorithms could be made arbitrary small when the computed transformations are invertable, whereas the corresponding errors for the nonmodified algorithms were on the order of the pixel size. Furthermore, the symmetric and transitive modification of the algorithms had higher registration accuracy than the nonmodified algorithms for both image sequences.