Cargando…
qvality: non-parametric estimation of q-values and posterior error probabilities
Summary: Qvality is a C++ program for estimating two types of standard statistical confidence measures: the q-value, which is an analog of the p-value that incorporates multiple testing correction, and the posterior error probability (PEP, also known as the local false discovery rate), which corresp...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2660870/ https://www.ncbi.nlm.nih.gov/pubmed/19193729 http://dx.doi.org/10.1093/bioinformatics/btp021 |
_version_ | 1782165763279290368 |
---|---|
author | Käll, Lukas Storey, John D. Noble, William Stafford |
author_facet | Käll, Lukas Storey, John D. Noble, William Stafford |
author_sort | Käll, Lukas |
collection | PubMed |
description | Summary: Qvality is a C++ program for estimating two types of standard statistical confidence measures: the q-value, which is an analog of the p-value that incorporates multiple testing correction, and the posterior error probability (PEP, also known as the local false discovery rate), which corresponds to the probability that a given observation is drawn from the null distribution. In computing q-values, qvality employs a standard bootstrap procedure to estimate the prior probability of a score being from the null distribution; for PEP estimation, qvality relies upon non-parametric logistic regression. Relative to other tools for estimating statistical confidence measures, qvality is unique in its ability to estimate both types of scores directly from a null distribution, without requiring the user to calculate p-values. Availability: A web server, C++ source code and binaries are available under MIT license at http://noble.gs.washington.edu/proj/qvality Contact: lukas.kall@cbr.su.se Supplementary information: Supplementary data are available at Bioinformatics online. |
format | Text |
id | pubmed-2660870 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-26608702009-04-24 qvality: non-parametric estimation of q-values and posterior error probabilities Käll, Lukas Storey, John D. Noble, William Stafford Bioinformatics Applications Note Summary: Qvality is a C++ program for estimating two types of standard statistical confidence measures: the q-value, which is an analog of the p-value that incorporates multiple testing correction, and the posterior error probability (PEP, also known as the local false discovery rate), which corresponds to the probability that a given observation is drawn from the null distribution. In computing q-values, qvality employs a standard bootstrap procedure to estimate the prior probability of a score being from the null distribution; for PEP estimation, qvality relies upon non-parametric logistic regression. Relative to other tools for estimating statistical confidence measures, qvality is unique in its ability to estimate both types of scores directly from a null distribution, without requiring the user to calculate p-values. Availability: A web server, C++ source code and binaries are available under MIT license at http://noble.gs.washington.edu/proj/qvality Contact: lukas.kall@cbr.su.se Supplementary information: Supplementary data are available at Bioinformatics online. Oxford University Press 2009-04-01 2009-02-04 /pmc/articles/PMC2660870/ /pubmed/19193729 http://dx.doi.org/10.1093/bioinformatics/btp021 Text en © 2009 The Author(s) http://creativecommons.org/licenses/by-nc/2.0/uk/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Applications Note Käll, Lukas Storey, John D. Noble, William Stafford qvality: non-parametric estimation of q-values and posterior error probabilities |
title | qvality: non-parametric estimation of q-values and posterior error probabilities |
title_full | qvality: non-parametric estimation of q-values and posterior error probabilities |
title_fullStr | qvality: non-parametric estimation of q-values and posterior error probabilities |
title_full_unstemmed | qvality: non-parametric estimation of q-values and posterior error probabilities |
title_short | qvality: non-parametric estimation of q-values and posterior error probabilities |
title_sort | qvality: non-parametric estimation of q-values and posterior error probabilities |
topic | Applications Note |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2660870/ https://www.ncbi.nlm.nih.gov/pubmed/19193729 http://dx.doi.org/10.1093/bioinformatics/btp021 |
work_keys_str_mv | AT kalllukas qvalitynonparametricestimationofqvaluesandposteriorerrorprobabilities AT storeyjohnd qvalitynonparametricestimationofqvaluesandposteriorerrorprobabilities AT noblewilliamstafford qvalitynonparametricestimationofqvaluesandposteriorerrorprobabilities |