Cargando…
Neural network committees for finger joint angle estimation from surface EMG signals
BACKGROUND: In virtual reality (VR) systems, the user's finger and hand positions are sensed and used to control the virtual environments. Direct biocontrol of VR environments using surface electromyography (SEMG) signals may be more synergistic and unconstraining to the user. The purpose of th...
Autores principales: | Shrirao, Nikhil A, Reddy, Narender P, Kosuri, Durga R |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2661079/ https://www.ncbi.nlm.nih.gov/pubmed/19154615 http://dx.doi.org/10.1186/1475-925X-8-2 |
Ejemplares similares
-
Prediction of the performance of artificial neural networks in mapping sEMG to finger joint angles via signal pre-investigation techniques
por: Batayneh, Wafa, et al.
Publicado: (2020) -
Estimation of Knee Joint Angle from Surface EMG Using Multiple Kernels Relevance Vector Regression
por: Li, Hui-Bin, et al.
Publicado: (2023) -
SEEDS, simultaneous recordings of high-density EMG and finger joint angles during multiple hand movements
por: Matran-Fernandez, Ana, et al.
Publicado: (2019) -
Joint angle estimation with wavelet neural networks
por: Sivakumar, Saaveethya, et al.
Publicado: (2021) -
EMG and Joint Angle-Based Machine Learning to Predict Future Joint Angles at the Knee
por: Coker, Jordan, et al.
Publicado: (2021)