Cargando…

Development of the probability of return of spontaneous circulation in intervals without chest compressions during out-of-hospital cardiac arrest: an observational study

BACKGROUND: One of the factors that limits survival from out-of-hospital cardiac arrest is the interruption of chest compressions. During ventricular fibrillation and tachycardia the electrocardiogram reflects the probability of return of spontaneous circulation associated with defibrillation. We ha...

Descripción completa

Detalles Bibliográficos
Autores principales: Gundersen, Kenneth, Kvaløy, Jan Terje, Kramer-Johansen, Jo, Steen, Petter Andreas, Eftestøl, Trygve
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2661879/
https://www.ncbi.nlm.nih.gov/pubmed/19200355
http://dx.doi.org/10.1186/1741-7015-7-6
Descripción
Sumario:BACKGROUND: One of the factors that limits survival from out-of-hospital cardiac arrest is the interruption of chest compressions. During ventricular fibrillation and tachycardia the electrocardiogram reflects the probability of return of spontaneous circulation associated with defibrillation. We have used this in the current study to quantify in detail the effects of interrupting chest compressions. METHODS: From an electrocardiogram database we identified all intervals without chest compressions that followed an interval with compressions, and where the patients had ventricular fibrillation or tachycardia. By calculating the mean-slope (a predictor of the return of spontaneous circulation) of the electrocardiogram for each 2-second window, and using a linear mixed-effects statistical model, we quantified the decline of mean-slope with time. Further, a mapping from mean-slope to probability of return of spontaneous circulation was obtained from a second dataset and using this we were able to estimate the expected development of the probability of return of spontaneous circulation for cases at different levels. RESULTS: From 911 intervals without chest compressions, 5138 analysis windows were identified. The results show that cases with the probability of return of spontaneous circulation values 0.35, 0.1 and 0.05, 3 seconds into an interval in the mean will have probability of return of spontaneous circulation values 0.26 (0.24–0.29), 0.077 (0.070–0.085) and 0.040(0.036–0.045), respectively, 27 seconds into the interval (95% confidence intervals in parenthesis). CONCLUSION: During pre-shock pauses in chest compressions mean probability of return of spontaneous circulation decreases in a steady manner for cases at all initial levels. Regardless of initial level there is a relative decrease in the probability of return of spontaneous circulation of about 23% from 3 to 27 seconds into such a pause.