Cargando…

Overexpression of RRM2 decreases thrombspondin-1 and increases VEGF production in human cancer cells in vitro and in vivo: implication of RRM2 in angiogenesis

BACKGROUND: In addition to its essential role in ribonucleotide reduction, ribonucleotide reductase (RNR) small subunit, RRM2, has been known to play a critical role in determining tumor malignancy. Overexpression of RRM2 significantly enhances the invasive and metastatic potential of tumor. Angioge...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Keqiang, Hu, Shuya, Wu, Jun, Chen, Linling, Lu, Jianming, Wang, Xiaochen, Liu, Xiyong, Zhou, Bingsen, Yen, Yun
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2662784/
https://www.ncbi.nlm.nih.gov/pubmed/19250552
http://dx.doi.org/10.1186/1476-4598-8-11
Descripción
Sumario:BACKGROUND: In addition to its essential role in ribonucleotide reduction, ribonucleotide reductase (RNR) small subunit, RRM2, has been known to play a critical role in determining tumor malignancy. Overexpression of RRM2 significantly enhances the invasive and metastatic potential of tumor. Angiogenesis is critical to tumor malignancy; it plays an essential role in tumor growth and metastasis. It is important to investigate whether the angiogenic potential of tumor is affected by RRM2. RESULTS: We examined the expression of antiangiogenic thrombospondin-1 (TSP-1) and proangiogenic vascular endothelial growth factor (VEGF) in two RRM2-overexpressing KB cells: KB-M2-D and KB-HURs. We found that TSP-1 was significantly decreased in both KB-M2-D and KB-HURs cells compared to the parental KB and mock transfected KB-V. Simultaneously, RRM2-overexpressing KB cells showed increased production of VEGF mRNA and protein. In contrast, attenuating RRM2 expression via siRNA resulted in a significant increased TSP-1 expression in both KB and LNCaP cells; while the expression of VEGF by the two cells was significantly decreased under both normoxia and hypoxia. In comparison with KB-V, overexpression of RRM2 had no significant effect on proliferation in vitro, but it dramatically accelerated in vivo subcutaneous growth of KB-M2-D. KB-M2-D possessed more angiogenic potential than KB-V, as shown in vitro by its increased chemotaxis for endothelial cells and in vivo by the generation of more vascularized tumor xenografts. CONCLUSION: These findings suggest a positive role of RRM2 in tumor angiogenesis and growth through regulation of the expression of TSP-1 and VEGF.