Cargando…
Biomedical word sense disambiguation with ontologies and metadata: automation meets accuracy
BACKGROUND: Ontology term labels can be ambiguous and have multiple senses. While this is no problem for human annotators, it is a challenge to automated methods, which identify ontology terms in text. Classical approaches to word sense disambiguation use co-occurring words or terms. However, most t...
Autores principales: | Alexopoulou, Dimitra, Andreopoulos, Bill, Dietze, Heiko, Doms, Andreas, Gandon, Fabien, Hakenberg, Jörg, Khelif, Khaled, Schroeder, Michael, Wächter, Thomas |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2663782/ https://www.ncbi.nlm.nih.gov/pubmed/19159460 http://dx.doi.org/10.1186/1471-2105-10-28 |
Ejemplares similares
-
Using Ontology Fingerprints to disambiguate gene name entities in the biomedical literature
por: Chen, Guocai, et al.
Publicado: (2015) -
A Learning-Based Approach for Biomedical Word Sense Disambiguation
por: Al-Mubaid, Hisham, et al.
Publicado: (2012) -
Knowledge-based biomedical word sense disambiguation: comparison of approaches
por: Jimeno-Yepes, Antonio J, et al.
Publicado: (2010) -
Machine learning and word sense disambiguation in the biomedical domain: design and evaluation issues
por: Xu, Hua, et al.
Publicado: (2006) -
Fast max-margin clustering for unsupervised word sense disambiguation in biomedical texts
por: Duan, Weisi, et al.
Publicado: (2009)