Cargando…

Staging of Prostate Cancer Using Automatic Feature Selection, Sampling and Dempster-Shafer Fusion

A novel technique of automatically selecting the best pairs of features and sampling techniques to predict the stage of prostate cancer is proposed in this study. The problem of class imbalance, which is prominent in most medical data sets is also addressed here. Three feature subsets obtained by th...

Descripción completa

Detalles Bibliográficos
Autores principales: Chandana, Sandeep, Leung, Henry, Trpkov, Kiril
Formato: Texto
Lenguaje:English
Publicado: Libertas Academica 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2664701/
https://www.ncbi.nlm.nih.gov/pubmed/19352459
Descripción
Sumario:A novel technique of automatically selecting the best pairs of features and sampling techniques to predict the stage of prostate cancer is proposed in this study. The problem of class imbalance, which is prominent in most medical data sets is also addressed here. Three feature subsets obtained by the use of principal components analysis (PCA), genetic algorithm (GA) and rough sets (RS) based approaches were also used in the study. The performance of under-sampling, synthetic minority over-sampling technique (SMOTE) and a combination of the two were also investigated and the performance of the obtained models was compared. To combine the classifier outputs, we used the Dempster-Shafer (DS) theory, whereas the actual choice of combined models was made using a GA. We found that the best performance for the overall system resulted from the use of under sampled data combined with rough sets based features modeled as a support vector machine (SVM).