Cargando…
Staging of Prostate Cancer Using Automatic Feature Selection, Sampling and Dempster-Shafer Fusion
A novel technique of automatically selecting the best pairs of features and sampling techniques to predict the stage of prostate cancer is proposed in this study. The problem of class imbalance, which is prominent in most medical data sets is also addressed here. Three feature subsets obtained by th...
Autores principales: | Chandana, Sandeep, Leung, Henry, Trpkov, Kiril |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2664701/ https://www.ncbi.nlm.nih.gov/pubmed/19352459 |
Ejemplares similares
-
Automatic Updates of Transition Potential Matrices in Dempster-Shafer Networks Based on Evidence Inputs
por: Dunham, Joel, et al.
Publicado: (2020) -
A Deep Belief Network and Dempster-Shafer-Based Multiclassifier for the Pathology Stage of Prostate Cancer
por: Kim, Jae Kwon, et al.
Publicado: (2018) -
A modified belief entropy in Dempster-Shafer framework
por: Zhou, Deyun, et al.
Publicado: (2017) -
Interval-valued belief entropies for Dempster–Shafer structures
por: Xue, Yige, et al.
Publicado: (2021) -
Sensor Data Fusion for Accurate Cloud Presence Prediction Using Dempster-Shafer Evidence Theory
por: Li, Jiaming, et al.
Publicado: (2010)