Cargando…
Newly Generated Heparanase Knock-Out Mice Unravel Co-Regulation of Heparanase and Matrix Metalloproteinases
BACKGROUND: Heparanase, a mammalian endo-β-D-glucuronidase, specifically degrades heparan sulfate proteoglycans ubiquitously associated with the cell surface and extracellular matrix. This single gene encoded enzyme is over-expressed in most human cancers, promoting tumor metastasis and angiogenesis...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2664924/ https://www.ncbi.nlm.nih.gov/pubmed/19360105 http://dx.doi.org/10.1371/journal.pone.0005181 |
_version_ | 1782166003763904512 |
---|---|
author | Zcharia, Eyal Jia, Juan Zhang, Xiao Baraz, Lea Lindahl, Ulf Peretz, Tamar Vlodavsky, Israel Li, Jin-Ping |
author_facet | Zcharia, Eyal Jia, Juan Zhang, Xiao Baraz, Lea Lindahl, Ulf Peretz, Tamar Vlodavsky, Israel Li, Jin-Ping |
author_sort | Zcharia, Eyal |
collection | PubMed |
description | BACKGROUND: Heparanase, a mammalian endo-β-D-glucuronidase, specifically degrades heparan sulfate proteoglycans ubiquitously associated with the cell surface and extracellular matrix. This single gene encoded enzyme is over-expressed in most human cancers, promoting tumor metastasis and angiogenesis. PRINCIPAL FINDINGS: We report that targeted disruption of the murine heparanase gene eliminated heparanase enzymatic activity, resulting in accumulation of long heparan sulfate chains. Unexpectedly, the heparanase knockout (Hpse-KO) mice were fertile, exhibited a normal life span and did not show prominent pathological alterations. The lack of major abnormalities is attributed to a marked elevation in the expression of matrix metalloproteinases, for example, MMP2 and MMP14 in the Hpse-KO liver and kidney. Co-regulation of heparanase and MMPs was also noted by a marked decrease in MMP (primarily MMP-2,-9 and 14) expression following transfection and over-expression of the heparanase gene in cultured human mammary carcinoma (MDA-MB-231) cells. Immunostaining (kidney tissue) and chromatin immunoprecipitation (ChIP) analysis (Hpse-KO mouse embryonic fibroblasts) suggest that the newly discovered co-regulation of heparanase and MMPs is mediated by stabilization and transcriptional activity of β-catenin. CONCLUSIONS/SIGNIFICANCE: The lack of heparanase expression and activity was accompanied by alterations in the expression level of MMP family members, primarily MMP-2 and MMP-14. It is conceivable that MMP-2 and MMP-14, which exert some of the effects elicited by heparanase (i.e., over branching of mammary glands, enhanced angiogenic response) can compensate for its absence, in spite of their different enzymatic substrate. Generation of viable Hpse-KO mice lacking significant abnormalities may provide a promising indication for the use of heparanase as a target for drug development. |
format | Text |
id | pubmed-2664924 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-26649242009-04-10 Newly Generated Heparanase Knock-Out Mice Unravel Co-Regulation of Heparanase and Matrix Metalloproteinases Zcharia, Eyal Jia, Juan Zhang, Xiao Baraz, Lea Lindahl, Ulf Peretz, Tamar Vlodavsky, Israel Li, Jin-Ping PLoS One Research Article BACKGROUND: Heparanase, a mammalian endo-β-D-glucuronidase, specifically degrades heparan sulfate proteoglycans ubiquitously associated with the cell surface and extracellular matrix. This single gene encoded enzyme is over-expressed in most human cancers, promoting tumor metastasis and angiogenesis. PRINCIPAL FINDINGS: We report that targeted disruption of the murine heparanase gene eliminated heparanase enzymatic activity, resulting in accumulation of long heparan sulfate chains. Unexpectedly, the heparanase knockout (Hpse-KO) mice were fertile, exhibited a normal life span and did not show prominent pathological alterations. The lack of major abnormalities is attributed to a marked elevation in the expression of matrix metalloproteinases, for example, MMP2 and MMP14 in the Hpse-KO liver and kidney. Co-regulation of heparanase and MMPs was also noted by a marked decrease in MMP (primarily MMP-2,-9 and 14) expression following transfection and over-expression of the heparanase gene in cultured human mammary carcinoma (MDA-MB-231) cells. Immunostaining (kidney tissue) and chromatin immunoprecipitation (ChIP) analysis (Hpse-KO mouse embryonic fibroblasts) suggest that the newly discovered co-regulation of heparanase and MMPs is mediated by stabilization and transcriptional activity of β-catenin. CONCLUSIONS/SIGNIFICANCE: The lack of heparanase expression and activity was accompanied by alterations in the expression level of MMP family members, primarily MMP-2 and MMP-14. It is conceivable that MMP-2 and MMP-14, which exert some of the effects elicited by heparanase (i.e., over branching of mammary glands, enhanced angiogenic response) can compensate for its absence, in spite of their different enzymatic substrate. Generation of viable Hpse-KO mice lacking significant abnormalities may provide a promising indication for the use of heparanase as a target for drug development. Public Library of Science 2009-04-10 /pmc/articles/PMC2664924/ /pubmed/19360105 http://dx.doi.org/10.1371/journal.pone.0005181 Text en Zcharia et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Zcharia, Eyal Jia, Juan Zhang, Xiao Baraz, Lea Lindahl, Ulf Peretz, Tamar Vlodavsky, Israel Li, Jin-Ping Newly Generated Heparanase Knock-Out Mice Unravel Co-Regulation of Heparanase and Matrix Metalloproteinases |
title | Newly Generated Heparanase Knock-Out Mice Unravel Co-Regulation of Heparanase and Matrix Metalloproteinases |
title_full | Newly Generated Heparanase Knock-Out Mice Unravel Co-Regulation of Heparanase and Matrix Metalloproteinases |
title_fullStr | Newly Generated Heparanase Knock-Out Mice Unravel Co-Regulation of Heparanase and Matrix Metalloproteinases |
title_full_unstemmed | Newly Generated Heparanase Knock-Out Mice Unravel Co-Regulation of Heparanase and Matrix Metalloproteinases |
title_short | Newly Generated Heparanase Knock-Out Mice Unravel Co-Regulation of Heparanase and Matrix Metalloproteinases |
title_sort | newly generated heparanase knock-out mice unravel co-regulation of heparanase and matrix metalloproteinases |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2664924/ https://www.ncbi.nlm.nih.gov/pubmed/19360105 http://dx.doi.org/10.1371/journal.pone.0005181 |
work_keys_str_mv | AT zchariaeyal newlygeneratedheparanaseknockoutmiceunravelcoregulationofheparanaseandmatrixmetalloproteinases AT jiajuan newlygeneratedheparanaseknockoutmiceunravelcoregulationofheparanaseandmatrixmetalloproteinases AT zhangxiao newlygeneratedheparanaseknockoutmiceunravelcoregulationofheparanaseandmatrixmetalloproteinases AT barazlea newlygeneratedheparanaseknockoutmiceunravelcoregulationofheparanaseandmatrixmetalloproteinases AT lindahlulf newlygeneratedheparanaseknockoutmiceunravelcoregulationofheparanaseandmatrixmetalloproteinases AT peretztamar newlygeneratedheparanaseknockoutmiceunravelcoregulationofheparanaseandmatrixmetalloproteinases AT vlodavskyisrael newlygeneratedheparanaseknockoutmiceunravelcoregulationofheparanaseandmatrixmetalloproteinases AT lijinping newlygeneratedheparanaseknockoutmiceunravelcoregulationofheparanaseandmatrixmetalloproteinases |