Cargando…
Fast max-margin clustering for unsupervised word sense disambiguation in biomedical texts
BACKGROUND: We aim to solve the problem of determining word senses for ambiguous biomedical terms with minimal human effort. METHODS: We build a fully automated system for Word Sense Disambiguation by designing a system that does not require manually-constructed external resources or manually-labele...
Autores principales: | Duan, Weisi, Song, Min, Yates, Alexander |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2665052/ https://www.ncbi.nlm.nih.gov/pubmed/19344480 http://dx.doi.org/10.1186/1471-2105-10-S3-S4 |
Ejemplares similares
-
Word sense disambiguation for event trigger word detection in biomedicine
por: Martinez, David, et al.
Publicado: (2011) -
Studying the correlation between different word sense disambiguation methods and summarization effectiveness in biomedical texts
por: Plaza, Laura, et al.
Publicado: (2011) -
A Learning-Based Approach for Biomedical Word Sense Disambiguation
por: Al-Mubaid, Hisham, et al.
Publicado: (2012) -
Knowledge-based biomedical word sense disambiguation: comparison of approaches
por: Jimeno-Yepes, Antonio J, et al.
Publicado: (2010) -
The Naïve Bayes Model for Unsupervised Word Sense Disambiguation: Aspects Concerning Feature Selection
por: T Hristea, Florentina
Publicado: (2013)