Cargando…
Identification of temporal association rules from time-series microarray data sets
BACKGROUND: One of the most challenging problems in mining gene expression data is to identify how the expression of any particular gene affects the expression of other genes. To elucidate the relationships between genes, an association rule mining (ARM) method has been applied to microarray gene ex...
Autores principales: | Nam, Hojung, Lee, KiYoung, Lee, Doheon |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2665054/ https://www.ncbi.nlm.nih.gov/pubmed/19344482 http://dx.doi.org/10.1186/1471-2105-10-S3-S6 |
Ejemplares similares
-
Exploring molecular links between lymph node invasion and cancer prognosis in human breast cancer
por: Kim, Sangwoo, et al.
Publicado: (2011) -
Rule-based multi-scale simulation for drug effect pathway analysis
por: Hwang, Woochang, et al.
Publicado: (2013) -
Discovering monotonic stemness marker genes from time-series stem cell microarray data
por: Wang, Hsei-Wei, et al.
Publicado: (2015) -
Functional assessment of time course microarray data
por: Nueda, María José, et al.
Publicado: (2009) -
Mixture modeling of microarray gene expression data
por: Yang, Yang, et al.
Publicado: (2007)