Cargando…

Transcriptional signatures of BALB/c mouse macrophages housing multiplying Leishmania amazonensis amastigotes

BACKGROUND: Mammal macrophages (MΦ) display a wide range of functions which contribute to surveying and maintaining tissue integrity. One such function is phagocytosis, a process known to be subverted by parasites like Leishmania (L). Indeed, the intracellular development of L. amazonensis amastigot...

Descripción completa

Detalles Bibliográficos
Autores principales: Fortéa, José Osorio y, de La Llave, Emilie, Regnault, Béatrice, Coppée, Jean-Yves, Milon, Geneviève, Lang, Thierry, Prina, Eric
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2666765/
https://www.ncbi.nlm.nih.gov/pubmed/19302708
http://dx.doi.org/10.1186/1471-2164-10-119
Descripción
Sumario:BACKGROUND: Mammal macrophages (MΦ) display a wide range of functions which contribute to surveying and maintaining tissue integrity. One such function is phagocytosis, a process known to be subverted by parasites like Leishmania (L). Indeed, the intracellular development of L. amazonensis amastigote relies on the biogenesis and dynamic remodelling of a phagolysosome, termed the parasitophorous vacuole, primarily within dermal MΦ. RESULTS: Using BALB/c mouse bone marrow-derived MΦ loaded or not with amastigotes, we analyzed the transcriptional signatures of MΦ 24 h later, when the amastigote population was growing. Total RNA from MΦ cultures were processed and hybridized onto Affymetrix Mouse430_2 GeneChips(®), and some transcripts were also analyzed by Real-Time quantitative PCR (RTQPCR). A total of 1,248 probe-sets showed significant differential expression. Comparable fold-change values were obtained between the Affymetrix technology and the RTQPCR method. Ingenuity Pathway Analysis software(® )pinpointed the up-regulation of the sterol biosynthesis pathway (p-value = 1.31e-02) involving several genes (1.95 to 4.30 fold change values), and the modulation of various genes involved in polyamine synthesis and in pro/counter-inflammatory signalling. CONCLUSION: Our findings suggest that the amastigote growth relies on early coordinated gene expression of the MΦ lipid and polyamine pathways. Moreover, these MΦ hosting multiplying L. amazonensis amastigotes display a transcriptional profile biased towards parasite-and host tissue-protective processes.