Cargando…
Identification and Characterization of Neuronal Mitogen-activated Protein Kinase Substrates Using a Specific Phosphomotif Antibody
Mitogen-activated protein kinases (MAPKs) control neuronal synaptic function; however, little is known about the synaptic substrates regulated by MAPKs. A phosphopeptide library incorporating the MAPK consensus motif (PX(pS/pT)P where pS is phosphoserine and pT is phosphothreonine) was used to raise...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2667352/ https://www.ncbi.nlm.nih.gov/pubmed/19054758 http://dx.doi.org/10.1074/mcp.M800233-MCP200 |
_version_ | 1782166115748675584 |
---|---|
author | Edbauer, Dieter Cheng, Dongmei Batterton, Matthew N. Wang, Chi-Fong Duong, Duc M. Yaffe, Michael B. Peng, Junmin Sheng, Morgan |
author_facet | Edbauer, Dieter Cheng, Dongmei Batterton, Matthew N. Wang, Chi-Fong Duong, Duc M. Yaffe, Michael B. Peng, Junmin Sheng, Morgan |
author_sort | Edbauer, Dieter |
collection | PubMed |
description | Mitogen-activated protein kinases (MAPKs) control neuronal synaptic function; however, little is known about the synaptic substrates regulated by MAPKs. A phosphopeptide library incorporating the MAPK consensus motif (PX(pS/pT)P where pS is phosphoserine and pT is phosphothreonine) was used to raise a phosphospecific antibody that detected MAPK-mediated phosphorylation. The antibody (termed “5557”) recognized a variety of phosphoproteins in the brain, many of which were enriched in postsynaptic density fractions. The immunoblot pattern changed rapidly in response to altered synaptic activity and with the inhibition of specific MAPKs and protein phosphatases. By immunoaffinity purification with 5557 antibody followed by mass spectrometry, we identified 449 putative MAPK substrates of which many appeared dynamically regulated in neuron cultures. Several of the novel candidate MAPK substrates were validated by in vitro phosphorylation assays. Additionally 82 specific phosphorylation sites were identified in 34 proteins, including Ser-447 in δ-catenin, a component of the cadherin adhesion complex. We further raised another phosphospecific antibody to confirm that δ-catenin Ser-447 is modified in neurons by the MAPK JNK in a synaptic activity-dependent manner. Ser-447 phosphorylation by JNK appears to be correlated with δ-catenin degradation, and a δ-catenin mutant defective in Ser-447 phosphorylation showed enhanced ability to promote dendrite branching in cultured neurons. Thus, phosphomotif-based affinity purification is a powerful approach to identify novel substrates of MAPKs in vivo and to reveal functionally significant phosphorylation events. |
format | Text |
id | pubmed-2667352 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-26673522009-07-24 Identification and Characterization of Neuronal Mitogen-activated Protein Kinase Substrates Using a Specific Phosphomotif Antibody Edbauer, Dieter Cheng, Dongmei Batterton, Matthew N. Wang, Chi-Fong Duong, Duc M. Yaffe, Michael B. Peng, Junmin Sheng, Morgan Mol Cell Proteomics Research Mitogen-activated protein kinases (MAPKs) control neuronal synaptic function; however, little is known about the synaptic substrates regulated by MAPKs. A phosphopeptide library incorporating the MAPK consensus motif (PX(pS/pT)P where pS is phosphoserine and pT is phosphothreonine) was used to raise a phosphospecific antibody that detected MAPK-mediated phosphorylation. The antibody (termed “5557”) recognized a variety of phosphoproteins in the brain, many of which were enriched in postsynaptic density fractions. The immunoblot pattern changed rapidly in response to altered synaptic activity and with the inhibition of specific MAPKs and protein phosphatases. By immunoaffinity purification with 5557 antibody followed by mass spectrometry, we identified 449 putative MAPK substrates of which many appeared dynamically regulated in neuron cultures. Several of the novel candidate MAPK substrates were validated by in vitro phosphorylation assays. Additionally 82 specific phosphorylation sites were identified in 34 proteins, including Ser-447 in δ-catenin, a component of the cadherin adhesion complex. We further raised another phosphospecific antibody to confirm that δ-catenin Ser-447 is modified in neurons by the MAPK JNK in a synaptic activity-dependent manner. Ser-447 phosphorylation by JNK appears to be correlated with δ-catenin degradation, and a δ-catenin mutant defective in Ser-447 phosphorylation showed enhanced ability to promote dendrite branching in cultured neurons. Thus, phosphomotif-based affinity purification is a powerful approach to identify novel substrates of MAPKs in vivo and to reveal functionally significant phosphorylation events. American Society for Biochemistry and Molecular Biology 2009-04 /pmc/articles/PMC2667352/ /pubmed/19054758 http://dx.doi.org/10.1074/mcp.M800233-MCP200 Text en Copyright © 2009, The American Society for Biochemistry and Molecular Biology Author's Choice - Final Version Full Access Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) applies to Author Choice Articles |
spellingShingle | Research Edbauer, Dieter Cheng, Dongmei Batterton, Matthew N. Wang, Chi-Fong Duong, Duc M. Yaffe, Michael B. Peng, Junmin Sheng, Morgan Identification and Characterization of Neuronal Mitogen-activated Protein Kinase Substrates Using a Specific Phosphomotif Antibody |
title | Identification and Characterization of Neuronal Mitogen-activated Protein Kinase Substrates Using a Specific Phosphomotif Antibody |
title_full | Identification and Characterization of Neuronal Mitogen-activated Protein Kinase Substrates Using a Specific Phosphomotif Antibody |
title_fullStr | Identification and Characterization of Neuronal Mitogen-activated Protein Kinase Substrates Using a Specific Phosphomotif Antibody |
title_full_unstemmed | Identification and Characterization of Neuronal Mitogen-activated Protein Kinase Substrates Using a Specific Phosphomotif Antibody |
title_short | Identification and Characterization of Neuronal Mitogen-activated Protein Kinase Substrates Using a Specific Phosphomotif Antibody |
title_sort | identification and characterization of neuronal mitogen-activated protein kinase substrates using a specific phosphomotif antibody |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2667352/ https://www.ncbi.nlm.nih.gov/pubmed/19054758 http://dx.doi.org/10.1074/mcp.M800233-MCP200 |
work_keys_str_mv | AT edbauerdieter identificationandcharacterizationofneuronalmitogenactivatedproteinkinasesubstratesusingaspecificphosphomotifantibody AT chengdongmei identificationandcharacterizationofneuronalmitogenactivatedproteinkinasesubstratesusingaspecificphosphomotifantibody AT battertonmatthewn identificationandcharacterizationofneuronalmitogenactivatedproteinkinasesubstratesusingaspecificphosphomotifantibody AT wangchifong identificationandcharacterizationofneuronalmitogenactivatedproteinkinasesubstratesusingaspecificphosphomotifantibody AT duongducm identificationandcharacterizationofneuronalmitogenactivatedproteinkinasesubstratesusingaspecificphosphomotifantibody AT yaffemichaelb identificationandcharacterizationofneuronalmitogenactivatedproteinkinasesubstratesusingaspecificphosphomotifantibody AT pengjunmin identificationandcharacterizationofneuronalmitogenactivatedproteinkinasesubstratesusingaspecificphosphomotifantibody AT shengmorgan identificationandcharacterizationofneuronalmitogenactivatedproteinkinasesubstratesusingaspecificphosphomotifantibody |