Cargando…

Toll-like receptor polymorphisms in malaria-endemic populations

BACKGROUND: Toll-like receptors (TLR) and related downstream signaling pathways of innate immunity have been implicated in the pathogenesis of Plasmodium falciparum malaria. Because of their potential role in malaria pathogenesis, polymorphisms in these genes may be under selective pressure in popul...

Descripción completa

Detalles Bibliográficos
Autores principales: Greene, Jennifer A, Moormann, Ann M, Vulule, John, Bockarie, Moses J, Zimmerman, Peter A, Kazura, James W
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2667436/
https://www.ncbi.nlm.nih.gov/pubmed/19317913
http://dx.doi.org/10.1186/1475-2875-8-50
_version_ 1782166127781085184
author Greene, Jennifer A
Moormann, Ann M
Vulule, John
Bockarie, Moses J
Zimmerman, Peter A
Kazura, James W
author_facet Greene, Jennifer A
Moormann, Ann M
Vulule, John
Bockarie, Moses J
Zimmerman, Peter A
Kazura, James W
author_sort Greene, Jennifer A
collection PubMed
description BACKGROUND: Toll-like receptors (TLR) and related downstream signaling pathways of innate immunity have been implicated in the pathogenesis of Plasmodium falciparum malaria. Because of their potential role in malaria pathogenesis, polymorphisms in these genes may be under selective pressure in populations where this infectious disease is endemic. METHODS: A post-PCR Ligation Detection Reaction-Fluorescent Microsphere Assay (LDR-FMA) was developed to determine the frequencies of TLR2, TLR4, TLR9, MyD88-Adaptor Like Protein (MAL) single nucleotide polymorphisms (SNPs), and TLR2 length polymorphisms in 170 residents of two regions of Kenya where malaria transmission is stable and high (holoendemic) or episodic and low, 346 residents of a malaria holoendemic region of Papua New Guinea, and 261 residents of North America of self-identified ethnicity. RESULTS: The difference in historical malaria exposure between the two Kenyan sites has significantly increased the frequency of malaria protective alleles glucose-6-phoshpate dehydrogenase (G6PD) and Hemoglobin S (HbS) in the holoendemic site compared to the episodic transmission site. However, this study detected no such difference in the TLR2, TLR4, TLR9, and MAL allele frequencies between the two study sites. All polymorphisms were in Hardy Weinberg Equilibrium in the Kenyan and Papua New Guinean populations. TLR9 SNPs and length polymorphisms within the TLR2 5' untranslated region were the only mutant alleles present at a frequency greater than 10% in all populations. CONCLUSION: Similar frequencies of TLR2, TLR4, TLR9, and MAL genetic polymorphisms in populations with different histories of malaria exposure suggest that these innate immune pathways have not been under strong selective pressure by malaria. Genotype frequencies are consistent with Hardy-Weinberg Equilibrium and the Neutral Theory, suggesting that genetic drift has influenced allele frequencies to a greater extent than selective pressure from malaria or any other infectious agents in these populations.
format Text
id pubmed-2667436
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-26674362009-04-10 Toll-like receptor polymorphisms in malaria-endemic populations Greene, Jennifer A Moormann, Ann M Vulule, John Bockarie, Moses J Zimmerman, Peter A Kazura, James W Malar J Research BACKGROUND: Toll-like receptors (TLR) and related downstream signaling pathways of innate immunity have been implicated in the pathogenesis of Plasmodium falciparum malaria. Because of their potential role in malaria pathogenesis, polymorphisms in these genes may be under selective pressure in populations where this infectious disease is endemic. METHODS: A post-PCR Ligation Detection Reaction-Fluorescent Microsphere Assay (LDR-FMA) was developed to determine the frequencies of TLR2, TLR4, TLR9, MyD88-Adaptor Like Protein (MAL) single nucleotide polymorphisms (SNPs), and TLR2 length polymorphisms in 170 residents of two regions of Kenya where malaria transmission is stable and high (holoendemic) or episodic and low, 346 residents of a malaria holoendemic region of Papua New Guinea, and 261 residents of North America of self-identified ethnicity. RESULTS: The difference in historical malaria exposure between the two Kenyan sites has significantly increased the frequency of malaria protective alleles glucose-6-phoshpate dehydrogenase (G6PD) and Hemoglobin S (HbS) in the holoendemic site compared to the episodic transmission site. However, this study detected no such difference in the TLR2, TLR4, TLR9, and MAL allele frequencies between the two study sites. All polymorphisms were in Hardy Weinberg Equilibrium in the Kenyan and Papua New Guinean populations. TLR9 SNPs and length polymorphisms within the TLR2 5' untranslated region were the only mutant alleles present at a frequency greater than 10% in all populations. CONCLUSION: Similar frequencies of TLR2, TLR4, TLR9, and MAL genetic polymorphisms in populations with different histories of malaria exposure suggest that these innate immune pathways have not been under strong selective pressure by malaria. Genotype frequencies are consistent with Hardy-Weinberg Equilibrium and the Neutral Theory, suggesting that genetic drift has influenced allele frequencies to a greater extent than selective pressure from malaria or any other infectious agents in these populations. BioMed Central 2009-03-24 /pmc/articles/PMC2667436/ /pubmed/19317913 http://dx.doi.org/10.1186/1475-2875-8-50 Text en Copyright © 2009 Greene et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Greene, Jennifer A
Moormann, Ann M
Vulule, John
Bockarie, Moses J
Zimmerman, Peter A
Kazura, James W
Toll-like receptor polymorphisms in malaria-endemic populations
title Toll-like receptor polymorphisms in malaria-endemic populations
title_full Toll-like receptor polymorphisms in malaria-endemic populations
title_fullStr Toll-like receptor polymorphisms in malaria-endemic populations
title_full_unstemmed Toll-like receptor polymorphisms in malaria-endemic populations
title_short Toll-like receptor polymorphisms in malaria-endemic populations
title_sort toll-like receptor polymorphisms in malaria-endemic populations
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2667436/
https://www.ncbi.nlm.nih.gov/pubmed/19317913
http://dx.doi.org/10.1186/1475-2875-8-50
work_keys_str_mv AT greenejennifera tolllikereceptorpolymorphismsinmalariaendemicpopulations
AT moormannannm tolllikereceptorpolymorphismsinmalariaendemicpopulations
AT vululejohn tolllikereceptorpolymorphismsinmalariaendemicpopulations
AT bockariemosesj tolllikereceptorpolymorphismsinmalariaendemicpopulations
AT zimmermanpetera tolllikereceptorpolymorphismsinmalariaendemicpopulations
AT kazurajamesw tolllikereceptorpolymorphismsinmalariaendemicpopulations