Cargando…

A sequence-anchored genetic linkage map for the moss, Physcomitrella patens

The moss Physcomitrella patens is a model for the study of plant cell biology and, by virtue of its basal position in land plant phylogeny, for comparative analysis of the evolution of plant gene function and development. It is ideally suited for ‘reverse genetic’ analysis by virtue of its outstandi...

Descripción completa

Detalles Bibliográficos
Autores principales: Kamisugi, Yasuko, von Stackelberg, Mark, Lang, Daniel, Care, Matthew, Reski, Ralf, Rensing, Stefan A, Cuming, Andrew C
Formato: Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2667646/
https://www.ncbi.nlm.nih.gov/pubmed/18657236
http://dx.doi.org/10.1111/j.1365-313X.2008.03637.x
Descripción
Sumario:The moss Physcomitrella patens is a model for the study of plant cell biology and, by virtue of its basal position in land plant phylogeny, for comparative analysis of the evolution of plant gene function and development. It is ideally suited for ‘reverse genetic’ analysis by virtue of its outstanding ability to undertake targeted transgene integration by homologous recombination. However, gene identification through mutagenesis and map-based cloning has hitherto not been possible, due to the lack of a genetic linkage map. Using molecular markers [amplified fragment length polymorphisms (AFLP) and simple sequence repeats (SSR)] we have generated genetic linkage maps for Physcomitrella. One hundred and seventy-nine gene-specific SSR markers were mapped in 46 linkage groups, and 1574 polymorphic AFLP markers were identified. Integrating the SSR- and AFLP-based maps generated 31 linkage groups comprising 1420 markers. Anchorage of the integrated linkage map with gene-specific SSR markers coupled with computational prediction of AFLP loci has enabled its correspondence with the newly sequenced Physcomitrella genome. The generation of a linkage map densely populated with molecular markers and anchored to the genome sequence now provides a resource for forward genetic interrogation of the organism and for the development of a pipeline for the map-based cloning of Physcomitrella genes. This will radically enhance the potential of Physcomitrella for determining how gene function has evolved for the acquisition of complex developmental strategies within the plant kingdom.