Cargando…
Small-scale, semi-automated purification of eukaryotic proteins for structure determination
A simple approach that allows cost-effective automated purification of recombinant proteins in levels sufficient for functional characterization or structural studies is described. Studies with four human stem cell proteins, an engineered version of green fluorescent protein, and other proteins are...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2668602/ https://www.ncbi.nlm.nih.gov/pubmed/17985212 http://dx.doi.org/10.1007/s10969-007-9032-5 |
_version_ | 1782166189297893376 |
---|---|
author | Frederick, Ronnie O. Bergeman, Lai Blommel, Paul G. Bailey, Lucas J. McCoy, Jason G. Song, Jikui Meske, Louise Bingman, Craig A. Riters, Megan Dillon, Nicholas A. Kunert, John Yoon, Jung Whan Lim, Ahyoung Cassidy, Michael Bunge, Jason Aceti, David J. Primm, John G. Markley, John L. Phillips, George N. Fox, Brian G. |
author_facet | Frederick, Ronnie O. Bergeman, Lai Blommel, Paul G. Bailey, Lucas J. McCoy, Jason G. Song, Jikui Meske, Louise Bingman, Craig A. Riters, Megan Dillon, Nicholas A. Kunert, John Yoon, Jung Whan Lim, Ahyoung Cassidy, Michael Bunge, Jason Aceti, David J. Primm, John G. Markley, John L. Phillips, George N. Fox, Brian G. |
author_sort | Frederick, Ronnie O. |
collection | PubMed |
description | A simple approach that allows cost-effective automated purification of recombinant proteins in levels sufficient for functional characterization or structural studies is described. Studies with four human stem cell proteins, an engineered version of green fluorescent protein, and other proteins are included. The method combines an expression vector (pVP62K) that provides in vivo cleavage of an initial fusion protein, a factorial designed auto-induction medium that improves the performance of small-scale production, and rapid, automated metal affinity purification of His8-tagged proteins. For initial small-scale production screening, single colony transformants were grown overnight in 0.4 ml of auto-induction medium, produced proteins were purified using the Promega Maxwell 16, and purification results were analyzed by Caliper LC90 capillary electrophoresis. The yield of purified [U-(15)N]-His8-Tcl-1 was 7.5 μg/ml of culture medium, of purified [U-(15)N]-His8-GFP was 68 μg/ml, and of purified selenomethione-labeled AIA–GFP (His8 removed by treatment with TEV protease) was 172 μg/ml. The yield information obtained from a successful automated purification from 0.4 ml was used to inform the decision to scale-up for a second meso-scale (10–50 ml) cell growth and automated purification. (1)H–(15)N NMR HSQC spectra of His8-Tcl-1 and of His8-GFP prepared from 50 ml cultures showed excellent chemical shift dispersion, consistent with well folded states in solution suitable for structure determination. Moreover, AIA–GFP obtained by proteolytic removal of the His8 tag was subjected to crystallization screening, and yielded crystals under several conditions. Single crystals were subsequently produced and optimized by the hanging drop method. The structure was solved by molecular replacement at a resolution of 1.7 Å. This approach provides an efficient way to carry out several key target screening steps that are essential for successful operation of proteomics pipelines with eukaryotic proteins: examination of total expression, determination of proteolysis of fusion tags, quantification of the yield of purified protein, and suitability for structure determination. |
format | Text |
id | pubmed-2668602 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | Springer Netherlands |
record_format | MEDLINE/PubMed |
spelling | pubmed-26686022009-04-23 Small-scale, semi-automated purification of eukaryotic proteins for structure determination Frederick, Ronnie O. Bergeman, Lai Blommel, Paul G. Bailey, Lucas J. McCoy, Jason G. Song, Jikui Meske, Louise Bingman, Craig A. Riters, Megan Dillon, Nicholas A. Kunert, John Yoon, Jung Whan Lim, Ahyoung Cassidy, Michael Bunge, Jason Aceti, David J. Primm, John G. Markley, John L. Phillips, George N. Fox, Brian G. J Struct Funct Genomics Article A simple approach that allows cost-effective automated purification of recombinant proteins in levels sufficient for functional characterization or structural studies is described. Studies with four human stem cell proteins, an engineered version of green fluorescent protein, and other proteins are included. The method combines an expression vector (pVP62K) that provides in vivo cleavage of an initial fusion protein, a factorial designed auto-induction medium that improves the performance of small-scale production, and rapid, automated metal affinity purification of His8-tagged proteins. For initial small-scale production screening, single colony transformants were grown overnight in 0.4 ml of auto-induction medium, produced proteins were purified using the Promega Maxwell 16, and purification results were analyzed by Caliper LC90 capillary electrophoresis. The yield of purified [U-(15)N]-His8-Tcl-1 was 7.5 μg/ml of culture medium, of purified [U-(15)N]-His8-GFP was 68 μg/ml, and of purified selenomethione-labeled AIA–GFP (His8 removed by treatment with TEV protease) was 172 μg/ml. The yield information obtained from a successful automated purification from 0.4 ml was used to inform the decision to scale-up for a second meso-scale (10–50 ml) cell growth and automated purification. (1)H–(15)N NMR HSQC spectra of His8-Tcl-1 and of His8-GFP prepared from 50 ml cultures showed excellent chemical shift dispersion, consistent with well folded states in solution suitable for structure determination. Moreover, AIA–GFP obtained by proteolytic removal of the His8 tag was subjected to crystallization screening, and yielded crystals under several conditions. Single crystals were subsequently produced and optimized by the hanging drop method. The structure was solved by molecular replacement at a resolution of 1.7 Å. This approach provides an efficient way to carry out several key target screening steps that are essential for successful operation of proteomics pipelines with eukaryotic proteins: examination of total expression, determination of proteolysis of fusion tags, quantification of the yield of purified protein, and suitability for structure determination. Springer Netherlands 2007-11-06 2007-12 /pmc/articles/PMC2668602/ /pubmed/17985212 http://dx.doi.org/10.1007/s10969-007-9032-5 Text en © The Author(s) 2007 |
spellingShingle | Article Frederick, Ronnie O. Bergeman, Lai Blommel, Paul G. Bailey, Lucas J. McCoy, Jason G. Song, Jikui Meske, Louise Bingman, Craig A. Riters, Megan Dillon, Nicholas A. Kunert, John Yoon, Jung Whan Lim, Ahyoung Cassidy, Michael Bunge, Jason Aceti, David J. Primm, John G. Markley, John L. Phillips, George N. Fox, Brian G. Small-scale, semi-automated purification of eukaryotic proteins for structure determination |
title | Small-scale, semi-automated purification of eukaryotic proteins for structure determination |
title_full | Small-scale, semi-automated purification of eukaryotic proteins for structure determination |
title_fullStr | Small-scale, semi-automated purification of eukaryotic proteins for structure determination |
title_full_unstemmed | Small-scale, semi-automated purification of eukaryotic proteins for structure determination |
title_short | Small-scale, semi-automated purification of eukaryotic proteins for structure determination |
title_sort | small-scale, semi-automated purification of eukaryotic proteins for structure determination |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2668602/ https://www.ncbi.nlm.nih.gov/pubmed/17985212 http://dx.doi.org/10.1007/s10969-007-9032-5 |
work_keys_str_mv | AT frederickronnieo smallscalesemiautomatedpurificationofeukaryoticproteinsforstructuredetermination AT bergemanlai smallscalesemiautomatedpurificationofeukaryoticproteinsforstructuredetermination AT blommelpaulg smallscalesemiautomatedpurificationofeukaryoticproteinsforstructuredetermination AT baileylucasj smallscalesemiautomatedpurificationofeukaryoticproteinsforstructuredetermination AT mccoyjasong smallscalesemiautomatedpurificationofeukaryoticproteinsforstructuredetermination AT songjikui smallscalesemiautomatedpurificationofeukaryoticproteinsforstructuredetermination AT meskelouise smallscalesemiautomatedpurificationofeukaryoticproteinsforstructuredetermination AT bingmancraiga smallscalesemiautomatedpurificationofeukaryoticproteinsforstructuredetermination AT ritersmegan smallscalesemiautomatedpurificationofeukaryoticproteinsforstructuredetermination AT dillonnicholasa smallscalesemiautomatedpurificationofeukaryoticproteinsforstructuredetermination AT kunertjohn smallscalesemiautomatedpurificationofeukaryoticproteinsforstructuredetermination AT yoonjungwhan smallscalesemiautomatedpurificationofeukaryoticproteinsforstructuredetermination AT limahyoung smallscalesemiautomatedpurificationofeukaryoticproteinsforstructuredetermination AT cassidymichael smallscalesemiautomatedpurificationofeukaryoticproteinsforstructuredetermination AT bungejason smallscalesemiautomatedpurificationofeukaryoticproteinsforstructuredetermination AT acetidavidj smallscalesemiautomatedpurificationofeukaryoticproteinsforstructuredetermination AT primmjohng smallscalesemiautomatedpurificationofeukaryoticproteinsforstructuredetermination AT markleyjohnl smallscalesemiautomatedpurificationofeukaryoticproteinsforstructuredetermination AT phillipsgeorgen smallscalesemiautomatedpurificationofeukaryoticproteinsforstructuredetermination AT foxbriang smallscalesemiautomatedpurificationofeukaryoticproteinsforstructuredetermination |