Cargando…
Characterizing Gene Expressions Based on Their Temporal Observations
Temporal gene expression data are of particular interest to researchers as they contain rich information in characterization of gene function and have been widely used in biomedical studies. However, extracting information and identifying efficient treatment effects without loss of temporal informat...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2668864/ https://www.ncbi.nlm.nih.gov/pubmed/19390582 http://dx.doi.org/10.1155/2009/357937 |
_version_ | 1782166209149534208 |
---|---|
author | Song, Jiuzhou Fang, Hong-Bin Duan, Kangmin |
author_facet | Song, Jiuzhou Fang, Hong-Bin Duan, Kangmin |
author_sort | Song, Jiuzhou |
collection | PubMed |
description | Temporal gene expression data are of particular interest to researchers as they contain rich information in characterization of gene function and have been widely used in biomedical studies. However, extracting information and identifying efficient treatment effects without loss of temporal information are still in problem. In this paper, we propose a method of classifying temporal gene expression curves in which individual expression trajectory is modeled as longitudinal data with changeable variance and covariance structure. The method, mainly based on generalized mixed model, is illustrated by a dense temporal gene expression data in bacteria. We aimed at evaluating gene effects and treatments. The power and time points of measurements are also characterized via the longitudinal mixed model. The results indicated that the proposed methodology is promising for the analysis of temporal gene expression data, and that it could be generally applicable to other high-throughput temporal gene expression analyses. |
format | Text |
id | pubmed-2668864 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-26688642009-04-22 Characterizing Gene Expressions Based on Their Temporal Observations Song, Jiuzhou Fang, Hong-Bin Duan, Kangmin J Biomed Biotechnol Research Article Temporal gene expression data are of particular interest to researchers as they contain rich information in characterization of gene function and have been widely used in biomedical studies. However, extracting information and identifying efficient treatment effects without loss of temporal information are still in problem. In this paper, we propose a method of classifying temporal gene expression curves in which individual expression trajectory is modeled as longitudinal data with changeable variance and covariance structure. The method, mainly based on generalized mixed model, is illustrated by a dense temporal gene expression data in bacteria. We aimed at evaluating gene effects and treatments. The power and time points of measurements are also characterized via the longitudinal mixed model. The results indicated that the proposed methodology is promising for the analysis of temporal gene expression data, and that it could be generally applicable to other high-throughput temporal gene expression analyses. Hindawi Publishing Corporation 2009 2009-04-14 /pmc/articles/PMC2668864/ /pubmed/19390582 http://dx.doi.org/10.1155/2009/357937 Text en Copyright © 2009 Jiuzhou Song et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Song, Jiuzhou Fang, Hong-Bin Duan, Kangmin Characterizing Gene Expressions Based on Their Temporal Observations |
title | Characterizing Gene Expressions Based on Their Temporal Observations |
title_full | Characterizing Gene Expressions Based on Their Temporal Observations |
title_fullStr | Characterizing Gene Expressions Based on Their Temporal Observations |
title_full_unstemmed | Characterizing Gene Expressions Based on Their Temporal Observations |
title_short | Characterizing Gene Expressions Based on Their Temporal Observations |
title_sort | characterizing gene expressions based on their temporal observations |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2668864/ https://www.ncbi.nlm.nih.gov/pubmed/19390582 http://dx.doi.org/10.1155/2009/357937 |
work_keys_str_mv | AT songjiuzhou characterizinggeneexpressionsbasedontheirtemporalobservations AT fanghongbin characterizinggeneexpressionsbasedontheirtemporalobservations AT duankangmin characterizinggeneexpressionsbasedontheirtemporalobservations |