Cargando…

Systematic comparison of RNA extraction techniques from frozen and fresh lung tissues: checkpoint towards gene expression studies

BACKGROUND: The reliability of gene expression profiling-based technologies to detect transcriptional differences representative of the original samples is affected by the quality of the extracted RNA. It strictly depends upon the technique that has been employed. Hence, the present study aimed at s...

Descripción completa

Detalles Bibliográficos
Autores principales: Muyal, Jai Prakash, Muyal, Vandana, Kaistha, Brajesh Pratap, Seifart, Carola, Fehrenbach, Heinz
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2669047/
https://www.ncbi.nlm.nih.gov/pubmed/19317905
http://dx.doi.org/10.1186/1746-1596-4-9
_version_ 1782166223122857984
author Muyal, Jai Prakash
Muyal, Vandana
Kaistha, Brajesh Pratap
Seifart, Carola
Fehrenbach, Heinz
author_facet Muyal, Jai Prakash
Muyal, Vandana
Kaistha, Brajesh Pratap
Seifart, Carola
Fehrenbach, Heinz
author_sort Muyal, Jai Prakash
collection PubMed
description BACKGROUND: The reliability of gene expression profiling-based technologies to detect transcriptional differences representative of the original samples is affected by the quality of the extracted RNA. It strictly depends upon the technique that has been employed. Hence, the present study aimed at systematically comparing silica-gel column (SGC) and guanidine isothiocyanate (GTC) techniques of RNA isolation to answer the question which technique is preferable when frozen, long-term stored or fresh lung tissues have to be evaluated for the downstream molecular analysis. METHODS: Frozen lungs (n = 3) were prepared by long-term storage (2.5 yrs) in -80°C while fresh lungs (n = 3) were harvested and processed immediately. The purity and quantification of RNA was determined with a spectrophotometer whereas the total amounted copy numbers of target sequences were determined with iCycler detection system for assessment of RNA intactness (28S and 18S) and fragment sizes, i.e. short (GAPDH-3' UTR), medium (GAPDH), and long (PBGD) with 200 bp, 700 bp, and 1400 bp distance to the 3'ends of mRNA motif, respectively. RESULTS: Total yield of RNA was higher with GTC than SGC technique in frozen as well as fresh tissues while the purity of RNA remained comparable. The quantitative reverse transcriptase-polymerase chain reaction data revealed that higher mean copy numbers of 28S and a longer fragment (1400 bp) were obtained from RNA isolated with SGC than GTC technique using fresh as well as frozen tissues. Additionally, a high mean copy number of 18S and medium fragment (700 bp) were obtained in RNA isolated with SGC technique from fresh tissues, only. For the shorter fragment, no significant differences between both techniques were noticed. CONCLUSION: Our data demonstrated that although the GTC technique has yielded a higher amount of RNA, the SGC technique was much more superior with respect to the reliable generation of an intact RNA and effectively amplified longer products in fresh as well as in frozen tissues.
format Text
id pubmed-2669047
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-26690472009-04-15 Systematic comparison of RNA extraction techniques from frozen and fresh lung tissues: checkpoint towards gene expression studies Muyal, Jai Prakash Muyal, Vandana Kaistha, Brajesh Pratap Seifart, Carola Fehrenbach, Heinz Diagn Pathol Methodology BACKGROUND: The reliability of gene expression profiling-based technologies to detect transcriptional differences representative of the original samples is affected by the quality of the extracted RNA. It strictly depends upon the technique that has been employed. Hence, the present study aimed at systematically comparing silica-gel column (SGC) and guanidine isothiocyanate (GTC) techniques of RNA isolation to answer the question which technique is preferable when frozen, long-term stored or fresh lung tissues have to be evaluated for the downstream molecular analysis. METHODS: Frozen lungs (n = 3) were prepared by long-term storage (2.5 yrs) in -80°C while fresh lungs (n = 3) were harvested and processed immediately. The purity and quantification of RNA was determined with a spectrophotometer whereas the total amounted copy numbers of target sequences were determined with iCycler detection system for assessment of RNA intactness (28S and 18S) and fragment sizes, i.e. short (GAPDH-3' UTR), medium (GAPDH), and long (PBGD) with 200 bp, 700 bp, and 1400 bp distance to the 3'ends of mRNA motif, respectively. RESULTS: Total yield of RNA was higher with GTC than SGC technique in frozen as well as fresh tissues while the purity of RNA remained comparable. The quantitative reverse transcriptase-polymerase chain reaction data revealed that higher mean copy numbers of 28S and a longer fragment (1400 bp) were obtained from RNA isolated with SGC than GTC technique using fresh as well as frozen tissues. Additionally, a high mean copy number of 18S and medium fragment (700 bp) were obtained in RNA isolated with SGC technique from fresh tissues, only. For the shorter fragment, no significant differences between both techniques were noticed. CONCLUSION: Our data demonstrated that although the GTC technique has yielded a higher amount of RNA, the SGC technique was much more superior with respect to the reliable generation of an intact RNA and effectively amplified longer products in fresh as well as in frozen tissues. BioMed Central 2009-03-24 /pmc/articles/PMC2669047/ /pubmed/19317905 http://dx.doi.org/10.1186/1746-1596-4-9 Text en Copyright © 2009 Muyal et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Methodology
Muyal, Jai Prakash
Muyal, Vandana
Kaistha, Brajesh Pratap
Seifart, Carola
Fehrenbach, Heinz
Systematic comparison of RNA extraction techniques from frozen and fresh lung tissues: checkpoint towards gene expression studies
title Systematic comparison of RNA extraction techniques from frozen and fresh lung tissues: checkpoint towards gene expression studies
title_full Systematic comparison of RNA extraction techniques from frozen and fresh lung tissues: checkpoint towards gene expression studies
title_fullStr Systematic comparison of RNA extraction techniques from frozen and fresh lung tissues: checkpoint towards gene expression studies
title_full_unstemmed Systematic comparison of RNA extraction techniques from frozen and fresh lung tissues: checkpoint towards gene expression studies
title_short Systematic comparison of RNA extraction techniques from frozen and fresh lung tissues: checkpoint towards gene expression studies
title_sort systematic comparison of rna extraction techniques from frozen and fresh lung tissues: checkpoint towards gene expression studies
topic Methodology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2669047/
https://www.ncbi.nlm.nih.gov/pubmed/19317905
http://dx.doi.org/10.1186/1746-1596-4-9
work_keys_str_mv AT muyaljaiprakash systematiccomparisonofrnaextractiontechniquesfromfrozenandfreshlungtissuescheckpointtowardsgeneexpressionstudies
AT muyalvandana systematiccomparisonofrnaextractiontechniquesfromfrozenandfreshlungtissuescheckpointtowardsgeneexpressionstudies
AT kaisthabrajeshpratap systematiccomparisonofrnaextractiontechniquesfromfrozenandfreshlungtissuescheckpointtowardsgeneexpressionstudies
AT seifartcarola systematiccomparisonofrnaextractiontechniquesfromfrozenandfreshlungtissuescheckpointtowardsgeneexpressionstudies
AT fehrenbachheinz systematiccomparisonofrnaextractiontechniquesfromfrozenandfreshlungtissuescheckpointtowardsgeneexpressionstudies