Cargando…
NIFTI: An evolutionary approach for finding number of clusters in microarray data
BACKGROUND: Clustering techniques are routinely used in gene expression data analysis to organize the massive data. Clustering techniques arrange a large number of genes or assays into a few clusters while maximizing the intra-cluster similarity and inter-cluster separation. While clustering of gene...
Autores principales: | Jonnalagadda, Sudhakar, Srinivasan, Rajagopalan |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2669482/ https://www.ncbi.nlm.nih.gov/pubmed/19178750 http://dx.doi.org/10.1186/1471-2105-10-40 |
Ejemplares similares
-
NIfTI‐MRS: A standard data format for magnetic resonance spectroscopy
por: Clarke, William T., et al.
Publicado: (2022) -
Principal components analysis based methodology to identify differentially expressed genes in time-course microarray data
por: Jonnalagadda, Sudhakar, et al.
Publicado: (2008) -
Nifty fifty
por: Kim, Tae-Il
Publicado: (2010) -
A novel approach to the clustering of microarray data via nonparametric density estimation
por: De Bin, Riccardo, et al.
Publicado: (2011) -
Cluster stability scores for microarray data in cancer studies
por: Smolkin, Mark, et al.
Publicado: (2003)