Cargando…
A new regularized least squares support vector regression for gene selection
BACKGROUND: Selection of influential genes with microarray data often faces the difficulties of a large number of genes and a relatively small group of subjects. In addition to the curse of dimensionality, many gene selection methods weight the contribution from each individual subject equally. This...
Autores principales: | Chen, Pei-Chun, Huang, Su-Yun, Chen, Wei J, Hsiao, Chuhsing K |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2669483/ https://www.ncbi.nlm.nih.gov/pubmed/19187562 http://dx.doi.org/10.1186/1471-2105-10-44 |
Ejemplares similares
-
Integrated application of uniform design and least-squares support vector machines to transfection optimization
por: Pan, Jin-Shui, et al.
Publicado: (2009) -
Identifying potential association on gene-disease network via dual hypergraph regularized least squares
por: Yang, Hongpeng, et al.
Publicado: (2021) -
A Nonlinear Adaptive Beamforming Algorithm Based on Least Squares Support Vector Regression
por: Wang, Lutao, et al.
Publicado: (2012) -
Quasi-least squares regression
por: Shults, Justine, et al.
Publicado: (2014) -
Penalized partial least squares for pleiotropy
por: Broc, Camilo, et al.
Publicado: (2021)