Cargando…
trans-Complementation of an NS2 Defect in a Late Step in Hepatitis C Virus (HCV) Particle Assembly and Maturation
Recent studies using cell culture infection systems that recapitulate the entire life cycle of hepatitis C virus (HCV) indicate that several nonstructural viral proteins, including NS2, NS3, and NS5A, are involved in the process of viral assembly and release. Other recent work suggests that Ser-168...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2669722/ https://www.ncbi.nlm.nih.gov/pubmed/19412343 http://dx.doi.org/10.1371/journal.ppat.1000403 |
Sumario: | Recent studies using cell culture infection systems that recapitulate the entire life cycle of hepatitis C virus (HCV) indicate that several nonstructural viral proteins, including NS2, NS3, and NS5A, are involved in the process of viral assembly and release. Other recent work suggests that Ser-168 of NS2 is a target of CK2 kinase–mediated phosphorylation, and that this controls the stability of the genotype 1a NS2 protein. Here, we show that Ser-168 is a critical determinant in the production of infectious virus particles. Substitution of Ser-168 with Ala (or Gly) ablated production of infectious virus by cells transfected with a chimeric viral RNA (HJ3-5) containing core-NS2 sequences from the genotype 1a H77 virus within the background of genotype 2a JFH1 virus. An S168A substitution also impaired production of virus by cells transfected with JFH1 RNA. This mutation did not alter polyprotein processing or genome replication. This defect in virus production could be rescued by expression of wt NS2 in trans from an alphavirus replicon. The trans-complementing activities of NS2 from genotypes 1a and 2a demonstrated strong preferences for rescue of the homologous genotype. Importantly, the S168A mutation did not alter the association of core or NS5A proteins with host cell lipid droplets, nor prevent the assembly of core into particles with sedimentation and buoyant density properties similar to infectious virus, indicating that NS2 acts subsequent to the involvement of core, NS5A, and NS3 in particle assembly. Second-site mutations in NS2 as well as in NS5A can rescue the defect in virus production imposed by the S168G mutation. In aggregate, these results indicate that NS2 functions in trans, in a late-post assembly maturation step, perhaps in concert with NS5A, to confer infectivity to the HCV particle. |
---|