Cargando…

Non-Canonical Wnt Signaling and N-Cadherin Related β-Catenin Signaling Play a Role in Mechanically Induced Osteogenic Cell Fate

BACKGROUND: Understanding how the mechanical microenvironment influences cell fate, and more importantly, by what molecular mechanisms, will enhance not only the knowledge of mesenchymal stem cell biology but also the field of regenerative medicine. Mechanical stimuli, specifically loading induced o...

Descripción completa

Detalles Bibliográficos
Autores principales: Arnsdorf, Emily J., Tummala, Padmaja, Jacobs, Christopher R.
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2670536/
https://www.ncbi.nlm.nih.gov/pubmed/19401766
http://dx.doi.org/10.1371/journal.pone.0005388
Descripción
Sumario:BACKGROUND: Understanding how the mechanical microenvironment influences cell fate, and more importantly, by what molecular mechanisms, will enhance not only the knowledge of mesenchymal stem cell biology but also the field of regenerative medicine. Mechanical stimuli, specifically loading induced oscillatory fluid flow, plays a vital role in promoting healthy bone development, homeostasis and morphology. Recent studies suggest that such loading induced fluid flow has the potential to regulate osteogenic differentiation via the upregulation of multiple osteogenic genes; however, the molecular mechanisms involved in the transduction of a physical signal into altered cell fate have yet to be determined. METHODS AND PRINCIPAL FINDINGS: Using immuno-staining, western blot analysis and luciferase assays, we demonstrate the oscillatory fluid flow regulates β-catenin nuclear translocation and gene transcription. Additionally, real time RT-PCR analysis suggests that flow induces Wnt5a and Ror2 upregulation, both of which are essential for activating the small GTPase, RhoA, upon flow exposure. Furthermore, although β-catenin phosphorylation is not altered by flow, its association with N-cadherin is, indicating that flow-induced β-catenin signaling is initiated by adherens junction signaling. CONCLUSION: We propose that the mechanical microenvironment of bone has the potential to regulate osteogenic differentiation by initiating multiple key molecular pathways that are essential for such lineage commitment. Specifically, non-canonical Wnt5a signaling involving Ror2 and RhoA as well as N-cadherin mediated β-catenin signaling are necessary for mechanically induced osteogenic differentiation.