Cargando…
Model for fitting longitudinal traits subject to threshold response applied to genetic evaluation for heat tolerance
A semi-parametric non-linear longitudinal hierarchical model is presented. The model assumes that individual variation exists both in the degree of the linear change of performance (slope) beyond a particular threshold of the independent variable scale and in the magnitude of the threshold itself; t...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2671243/ https://www.ncbi.nlm.nih.gov/pubmed/19284701 http://dx.doi.org/10.1186/1297-9686-41-10 |
_version_ | 1782166363282866176 |
---|---|
author | Sánchez, Juan Pablo Rekaya, Romdhane Misztal, Ignacy |
author_facet | Sánchez, Juan Pablo Rekaya, Romdhane Misztal, Ignacy |
author_sort | Sánchez, Juan Pablo |
collection | PubMed |
description | A semi-parametric non-linear longitudinal hierarchical model is presented. The model assumes that individual variation exists both in the degree of the linear change of performance (slope) beyond a particular threshold of the independent variable scale and in the magnitude of the threshold itself; these individual variations are attributed to genetic and environmental components. During implementation via a Bayesian MCMC approach, threshold levels were sampled using a Metropolis step because their fully conditional posterior distributions do not have a closed form. The model was tested by simulation following designs similar to previous studies on genetics of heat stress. Posterior means of parameters of interest, under all simulation scenarios, were close to their true values with the latter always being included in the uncertain regions, indicating an absence of bias. The proposed models provide flexible tools for studying genotype by environmental interaction as well as for fitting other longitudinal traits subject to abrupt changes in the performance at particular points on the independent variable scale. |
format | Text |
id | pubmed-2671243 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-26712432009-04-22 Model for fitting longitudinal traits subject to threshold response applied to genetic evaluation for heat tolerance Sánchez, Juan Pablo Rekaya, Romdhane Misztal, Ignacy Genet Sel Evol Research A semi-parametric non-linear longitudinal hierarchical model is presented. The model assumes that individual variation exists both in the degree of the linear change of performance (slope) beyond a particular threshold of the independent variable scale and in the magnitude of the threshold itself; these individual variations are attributed to genetic and environmental components. During implementation via a Bayesian MCMC approach, threshold levels were sampled using a Metropolis step because their fully conditional posterior distributions do not have a closed form. The model was tested by simulation following designs similar to previous studies on genetics of heat stress. Posterior means of parameters of interest, under all simulation scenarios, were close to their true values with the latter always being included in the uncertain regions, indicating an absence of bias. The proposed models provide flexible tools for studying genotype by environmental interaction as well as for fitting other longitudinal traits subject to abrupt changes in the performance at particular points on the independent variable scale. BioMed Central 2009-01-14 /pmc/articles/PMC2671243/ /pubmed/19284701 http://dx.doi.org/10.1186/1297-9686-41-10 Text en Copyright © 2009 Sánchez et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Sánchez, Juan Pablo Rekaya, Romdhane Misztal, Ignacy Model for fitting longitudinal traits subject to threshold response applied to genetic evaluation for heat tolerance |
title | Model for fitting longitudinal traits subject to threshold response applied to genetic evaluation for heat tolerance |
title_full | Model for fitting longitudinal traits subject to threshold response applied to genetic evaluation for heat tolerance |
title_fullStr | Model for fitting longitudinal traits subject to threshold response applied to genetic evaluation for heat tolerance |
title_full_unstemmed | Model for fitting longitudinal traits subject to threshold response applied to genetic evaluation for heat tolerance |
title_short | Model for fitting longitudinal traits subject to threshold response applied to genetic evaluation for heat tolerance |
title_sort | model for fitting longitudinal traits subject to threshold response applied to genetic evaluation for heat tolerance |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2671243/ https://www.ncbi.nlm.nih.gov/pubmed/19284701 http://dx.doi.org/10.1186/1297-9686-41-10 |
work_keys_str_mv | AT sanchezjuanpablo modelforfittinglongitudinaltraitssubjecttothresholdresponseappliedtogeneticevaluationforheattolerance AT rekayaromdhane modelforfittinglongitudinaltraitssubjecttothresholdresponseappliedtogeneticevaluationforheattolerance AT misztalignacy modelforfittinglongitudinaltraitssubjecttothresholdresponseappliedtogeneticevaluationforheattolerance |