Cargando…
Enhancing Time-Series Detection Algorithms for Automated Biosurveillance
BioSense is a US national system that uses data from health information systems for automated disease surveillance. We studied 4 time-series algorithm modifications designed to improve sensitivity for detecting artificially added data. To test these modified algorithms, we used reports of daily synd...
Autores principales: | Tokars, Jerome I., Burkom, Howard, Xing, Jian, English, Roseanne, Bloom, Steven, Cox, Kenneth, Pavlin, Julie A. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Centers for Disease Control and Prevention
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2671446/ https://www.ncbi.nlm.nih.gov/pubmed/19331728 http://dx.doi.org/10.3201/1504.080616 |
Ejemplares similares
-
Summary of data reported to CDC's national automated biosurveillance system, 2008
por: Tokars, Jerome I, et al.
Publicado: (2010) -
Evaluation of sliding baseline methods for spatial estimation for cluster detection in the biosurveillance system
por: Xing, Jian, et al.
Publicado: (2009) -
Comparison of Aberration Detection Algorithms for Biosurveillance Systems
por: Zhou, Hong, et al.
Publicado: (2014) -
Analytic Biosurveillance Methods for Resource-Limited Settings
por: Burkom, Howard, et al.
Publicado: (2014) -
Military Real-time Syndromic Surveillance System for Biosurveillance
Portal in Korea
por: Rhee, ChulWoo, et al.
Publicado: (2015)