Cargando…
A modified hyperplane clustering algorithm allows for efficient and accurate clustering of extremely large datasets
Motivation: As the number of publically available microarray experiments increases, the ability to analyze extremely large datasets across multiple experiments becomes critical. There is a requirement to develop algorithms which are fast and can cluster extremely large datasets without affecting the...
Autores principales: | Sharma, Ashok, Podolsky, Robert, Zhao, Jieping, McIndoe, Richard A. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2672630/ https://www.ncbi.nlm.nih.gov/pubmed/19261720 http://dx.doi.org/10.1093/bioinformatics/btp123 |
Ejemplares similares
-
ParaSAM: a parallelized version of the significance analysis of microarrays algorithm
por: Sharma, Ashok, et al.
Publicado: (2010) -
ParaKMeans: Implementation of a parallelized K-means algorithm suitable for general laboratory use
por: Kraj, Piotr, et al.
Publicado: (2008) -
Locating lines and hyperplanes: theory and algorithms
por: Schöbel, Anita
Publicado: (1999) -
A highly efficient multi-core algorithm for clustering extremely large datasets
por: Kraus, Johann M, et al.
Publicado: (2010) -
Arrangements of hyperplanes
por: Orlik, Peter, et al.
Publicado: (1992)