Cargando…
Novel sequencing strategy for repetitive DNA in a Drosophila BAC clone reveals that the centromeric region of the Y chromosome evolved from a telomere(†)
The centromeric and telomeric heterochromatin of eukaryotic chromosomes is mainly composed of middle-repetitive elements, such as transposable elements and tandemly repeated DNA sequences. Because of this repetitive nature, Whole Genome Shotgun Projects have failed in sequencing these regions. We de...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2673431/ https://www.ncbi.nlm.nih.gov/pubmed/19237394 http://dx.doi.org/10.1093/nar/gkp085 |
_version_ | 1782166587176910848 |
---|---|
author | Méndez-Lago, María Wild, Jadwiga Whitehead, Siobhan L. Tracey, Alan de Pablos, Beatriz Rogers, Jane Szybalski, Waclaw Villasante, Alfredo |
author_facet | Méndez-Lago, María Wild, Jadwiga Whitehead, Siobhan L. Tracey, Alan de Pablos, Beatriz Rogers, Jane Szybalski, Waclaw Villasante, Alfredo |
author_sort | Méndez-Lago, María |
collection | PubMed |
description | The centromeric and telomeric heterochromatin of eukaryotic chromosomes is mainly composed of middle-repetitive elements, such as transposable elements and tandemly repeated DNA sequences. Because of this repetitive nature, Whole Genome Shotgun Projects have failed in sequencing these regions. We describe a novel kind of transposon-based approach for sequencing highly repetitive DNA sequences in BAC clones. The key to this strategy relies on physical mapping the precise position of the transposon insertion, which enables the correct assembly of the repeated DNA. We have applied this strategy to a clone from the centromeric region of the Y chromosome of Drosophila melanogaster. The analysis of the complete sequence of this clone has allowed us to prove that this centromeric region evolved from a telomere, possibly after a pericentric inversion of an ancestral telocentric chromosome. Our results confirm that the use of transposon-mediated sequencing, including positional mapping information, improves current finishing strategies. The strategy we describe could be a universal approach to resolving the heterochromatic regions of eukaryotic genomes. |
format | Text |
id | pubmed-2673431 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-26734312009-05-15 Novel sequencing strategy for repetitive DNA in a Drosophila BAC clone reveals that the centromeric region of the Y chromosome evolved from a telomere(†) Méndez-Lago, María Wild, Jadwiga Whitehead, Siobhan L. Tracey, Alan de Pablos, Beatriz Rogers, Jane Szybalski, Waclaw Villasante, Alfredo Nucleic Acids Res Genomics The centromeric and telomeric heterochromatin of eukaryotic chromosomes is mainly composed of middle-repetitive elements, such as transposable elements and tandemly repeated DNA sequences. Because of this repetitive nature, Whole Genome Shotgun Projects have failed in sequencing these regions. We describe a novel kind of transposon-based approach for sequencing highly repetitive DNA sequences in BAC clones. The key to this strategy relies on physical mapping the precise position of the transposon insertion, which enables the correct assembly of the repeated DNA. We have applied this strategy to a clone from the centromeric region of the Y chromosome of Drosophila melanogaster. The analysis of the complete sequence of this clone has allowed us to prove that this centromeric region evolved from a telomere, possibly after a pericentric inversion of an ancestral telocentric chromosome. Our results confirm that the use of transposon-mediated sequencing, including positional mapping information, improves current finishing strategies. The strategy we describe could be a universal approach to resolving the heterochromatic regions of eukaryotic genomes. Oxford University Press 2009-04 2009-02-23 /pmc/articles/PMC2673431/ /pubmed/19237394 http://dx.doi.org/10.1093/nar/gkp085 Text en © 2009 The Author(s) http://creativecommons.org/licenses/by-nc/2.0/uk/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Genomics Méndez-Lago, María Wild, Jadwiga Whitehead, Siobhan L. Tracey, Alan de Pablos, Beatriz Rogers, Jane Szybalski, Waclaw Villasante, Alfredo Novel sequencing strategy for repetitive DNA in a Drosophila BAC clone reveals that the centromeric region of the Y chromosome evolved from a telomere(†) |
title | Novel sequencing strategy for repetitive DNA in a Drosophila BAC clone reveals that the centromeric region of the Y chromosome evolved from a telomere(†) |
title_full | Novel sequencing strategy for repetitive DNA in a Drosophila BAC clone reveals that the centromeric region of the Y chromosome evolved from a telomere(†) |
title_fullStr | Novel sequencing strategy for repetitive DNA in a Drosophila BAC clone reveals that the centromeric region of the Y chromosome evolved from a telomere(†) |
title_full_unstemmed | Novel sequencing strategy for repetitive DNA in a Drosophila BAC clone reveals that the centromeric region of the Y chromosome evolved from a telomere(†) |
title_short | Novel sequencing strategy for repetitive DNA in a Drosophila BAC clone reveals that the centromeric region of the Y chromosome evolved from a telomere(†) |
title_sort | novel sequencing strategy for repetitive dna in a drosophila bac clone reveals that the centromeric region of the y chromosome evolved from a telomere(†) |
topic | Genomics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2673431/ https://www.ncbi.nlm.nih.gov/pubmed/19237394 http://dx.doi.org/10.1093/nar/gkp085 |
work_keys_str_mv | AT mendezlagomaria novelsequencingstrategyforrepetitivednainadrosophilabacclonerevealsthatthecentromericregionoftheychromosomeevolvedfromatelomere AT wildjadwiga novelsequencingstrategyforrepetitivednainadrosophilabacclonerevealsthatthecentromericregionoftheychromosomeevolvedfromatelomere AT whiteheadsiobhanl novelsequencingstrategyforrepetitivednainadrosophilabacclonerevealsthatthecentromericregionoftheychromosomeevolvedfromatelomere AT traceyalan novelsequencingstrategyforrepetitivednainadrosophilabacclonerevealsthatthecentromericregionoftheychromosomeevolvedfromatelomere AT depablosbeatriz novelsequencingstrategyforrepetitivednainadrosophilabacclonerevealsthatthecentromericregionoftheychromosomeevolvedfromatelomere AT rogersjane novelsequencingstrategyforrepetitivednainadrosophilabacclonerevealsthatthecentromericregionoftheychromosomeevolvedfromatelomere AT szybalskiwaclaw novelsequencingstrategyforrepetitivednainadrosophilabacclonerevealsthatthecentromericregionoftheychromosomeevolvedfromatelomere AT villasantealfredo novelsequencingstrategyforrepetitivednainadrosophilabacclonerevealsthatthecentromericregionoftheychromosomeevolvedfromatelomere |