Cargando…

Improved Heuristics for Minimum-Flip Supertree Construction

The utility of the matrix representation with flipping (MRF) supertree method has been limited by the speed of its heuristic algorithms. We describe a new heuristic algorithm for MRF supertree construction that improves upon the speed of the previous heuristic by a factor of n (the number of taxa in...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Duhong, Eulenstein, Oliver, Fernández-Baca, David, Burleigh, J. Gordon
Formato: Texto
Lenguaje:English
Publicado: Libertas Academica 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2674677/
https://www.ncbi.nlm.nih.gov/pubmed/19455229
Descripción
Sumario:The utility of the matrix representation with flipping (MRF) supertree method has been limited by the speed of its heuristic algorithms. We describe a new heuristic algorithm for MRF supertree construction that improves upon the speed of the previous heuristic by a factor of n (the number of taxa in the supertree). This new heuristic makes MRF tractable for large-scale supertree analyses and allows the first comparisons of MRF with other supertree methods using large empirical data sets. Analyses of three published supertree data sets with between 267 to 571 taxa indicate that MRF supertrees are equally or more similar to the input trees on average than matrix representation with parsimony (MRP) and modified min-cut supertrees. The results also show that large differences may exist between MRF and MRP supertrees and demonstrate that the MRF supertree method is a practical and potentially more accurate alternative to the nearly ubiquitous MRP supertree method.