Cargando…
Parameter expansion for estimation of reduced rank covariance matrices (Open Access publication)
Parameter expanded and standard expectation maximisation algorithms are described for reduced rank estimation of covariance matrices by restricted maximum likelihood, fitting the leading principal components only. Convergence behaviour of these algorithms is examined for several examples and contras...
Autor principal: | Meyer, Karin |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2674917/ https://www.ncbi.nlm.nih.gov/pubmed/18096112 http://dx.doi.org/10.1186/1297-9686-40-1-3 |
Ejemplares similares
-
An 'average information' restricted maximum likelihood algorithm for estimating reduced rank genetic covariance matrices or covariance functions for animal models with equal design matrices
por: Meyer, K
Publicado: (1997) -
On Information Rank Deficiency in Phenotypic Covariance Matrices
por: O’Keefe, F Robin, et al.
Publicado: (2021) -
Performance of penalized maximum likelihood in estimation of genetic covariances matrices
por: Meyer, Karin
Publicado: (2011) -
Restricted maximum likelihood estimation of genetic principal components and smoothed covariance matrices
por: Meyer, Karin, et al.
Publicado: (2005) -
Shrinkage estimation for mean and covariance matrices
por: Tsukuma, Hisayuki, et al.
Publicado: (2020)