Cargando…
A comparison of strategies for Markov chain Monte Carlo computation in quantitative genetics
In quantitative genetics, Markov chain Monte Carlo (MCMC) methods are indispensable for statistical inference in non-standard models like generalized linear models with genetic random effects or models with genetically structured variance heterogeneity. A particular challenge for MCMC applications i...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2674923/ https://www.ncbi.nlm.nih.gov/pubmed/18298933 http://dx.doi.org/10.1186/1297-9686-40-2-161 |
_version_ | 1782166680952111104 |
---|---|
author | Waagepetersen, Rasmus Ibánẽz-Escriche, Noelia Sorensen, Daniel |
author_facet | Waagepetersen, Rasmus Ibánẽz-Escriche, Noelia Sorensen, Daniel |
author_sort | Waagepetersen, Rasmus |
collection | PubMed |
description | In quantitative genetics, Markov chain Monte Carlo (MCMC) methods are indispensable for statistical inference in non-standard models like generalized linear models with genetic random effects or models with genetically structured variance heterogeneity. A particular challenge for MCMC applications in quantitative genetics is to obtain efficient updates of the high-dimensional vectors of genetic random effects and the associated covariance parameters. We discuss various strategies to approach this problem including reparameterization, Langevin-Hastings updates, and updates based on normal approximations. The methods are compared in applications to Bayesian inference for three data sets using a model with genetically structured variance heterogeneity. |
format | Text |
id | pubmed-2674923 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-26749232009-04-30 A comparison of strategies for Markov chain Monte Carlo computation in quantitative genetics Waagepetersen, Rasmus Ibánẽz-Escriche, Noelia Sorensen, Daniel Genet Sel Evol Review In quantitative genetics, Markov chain Monte Carlo (MCMC) methods are indispensable for statistical inference in non-standard models like generalized linear models with genetic random effects or models with genetically structured variance heterogeneity. A particular challenge for MCMC applications in quantitative genetics is to obtain efficient updates of the high-dimensional vectors of genetic random effects and the associated covariance parameters. We discuss various strategies to approach this problem including reparameterization, Langevin-Hastings updates, and updates based on normal approximations. The methods are compared in applications to Bayesian inference for three data sets using a model with genetically structured variance heterogeneity. BioMed Central 2008-03-15 /pmc/articles/PMC2674923/ /pubmed/18298933 http://dx.doi.org/10.1186/1297-9686-40-2-161 Text en Copyright © 2008 INRA, EDP Sciences |
spellingShingle | Review Waagepetersen, Rasmus Ibánẽz-Escriche, Noelia Sorensen, Daniel A comparison of strategies for Markov chain Monte Carlo computation in quantitative genetics |
title | A comparison of strategies for Markov chain Monte Carlo computation in quantitative genetics |
title_full | A comparison of strategies for Markov chain Monte Carlo computation in quantitative genetics |
title_fullStr | A comparison of strategies for Markov chain Monte Carlo computation in quantitative genetics |
title_full_unstemmed | A comparison of strategies for Markov chain Monte Carlo computation in quantitative genetics |
title_short | A comparison of strategies for Markov chain Monte Carlo computation in quantitative genetics |
title_sort | comparison of strategies for markov chain monte carlo computation in quantitative genetics |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2674923/ https://www.ncbi.nlm.nih.gov/pubmed/18298933 http://dx.doi.org/10.1186/1297-9686-40-2-161 |
work_keys_str_mv | AT waagepetersenrasmus acomparisonofstrategiesformarkovchainmontecarlocomputationinquantitativegenetics AT ibanezescrichenoelia acomparisonofstrategiesformarkovchainmontecarlocomputationinquantitativegenetics AT sorensendaniel acomparisonofstrategiesformarkovchainmontecarlocomputationinquantitativegenetics AT waagepetersenrasmus comparisonofstrategiesformarkovchainmontecarlocomputationinquantitativegenetics AT ibanezescrichenoelia comparisonofstrategiesformarkovchainmontecarlocomputationinquantitativegenetics AT sorensendaniel comparisonofstrategiesformarkovchainmontecarlocomputationinquantitativegenetics |