Cargando…

A comparison of strategies for Markov chain Monte Carlo computation in quantitative genetics

In quantitative genetics, Markov chain Monte Carlo (MCMC) methods are indispensable for statistical inference in non-standard models like generalized linear models with genetic random effects or models with genetically structured variance heterogeneity. A particular challenge for MCMC applications i...

Descripción completa

Detalles Bibliográficos
Autores principales: Waagepetersen, Rasmus, Ibánẽz-Escriche, Noelia, Sorensen, Daniel
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2674923/
https://www.ncbi.nlm.nih.gov/pubmed/18298933
http://dx.doi.org/10.1186/1297-9686-40-2-161
_version_ 1782166680952111104
author Waagepetersen, Rasmus
Ibánẽz-Escriche, Noelia
Sorensen, Daniel
author_facet Waagepetersen, Rasmus
Ibánẽz-Escriche, Noelia
Sorensen, Daniel
author_sort Waagepetersen, Rasmus
collection PubMed
description In quantitative genetics, Markov chain Monte Carlo (MCMC) methods are indispensable for statistical inference in non-standard models like generalized linear models with genetic random effects or models with genetically structured variance heterogeneity. A particular challenge for MCMC applications in quantitative genetics is to obtain efficient updates of the high-dimensional vectors of genetic random effects and the associated covariance parameters. We discuss various strategies to approach this problem including reparameterization, Langevin-Hastings updates, and updates based on normal approximations. The methods are compared in applications to Bayesian inference for three data sets using a model with genetically structured variance heterogeneity.
format Text
id pubmed-2674923
institution National Center for Biotechnology Information
language English
publishDate 2008
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-26749232009-04-30 A comparison of strategies for Markov chain Monte Carlo computation in quantitative genetics Waagepetersen, Rasmus Ibánẽz-Escriche, Noelia Sorensen, Daniel Genet Sel Evol Review In quantitative genetics, Markov chain Monte Carlo (MCMC) methods are indispensable for statistical inference in non-standard models like generalized linear models with genetic random effects or models with genetically structured variance heterogeneity. A particular challenge for MCMC applications in quantitative genetics is to obtain efficient updates of the high-dimensional vectors of genetic random effects and the associated covariance parameters. We discuss various strategies to approach this problem including reparameterization, Langevin-Hastings updates, and updates based on normal approximations. The methods are compared in applications to Bayesian inference for three data sets using a model with genetically structured variance heterogeneity. BioMed Central 2008-03-15 /pmc/articles/PMC2674923/ /pubmed/18298933 http://dx.doi.org/10.1186/1297-9686-40-2-161 Text en Copyright © 2008 INRA, EDP Sciences
spellingShingle Review
Waagepetersen, Rasmus
Ibánẽz-Escriche, Noelia
Sorensen, Daniel
A comparison of strategies for Markov chain Monte Carlo computation in quantitative genetics
title A comparison of strategies for Markov chain Monte Carlo computation in quantitative genetics
title_full A comparison of strategies for Markov chain Monte Carlo computation in quantitative genetics
title_fullStr A comparison of strategies for Markov chain Monte Carlo computation in quantitative genetics
title_full_unstemmed A comparison of strategies for Markov chain Monte Carlo computation in quantitative genetics
title_short A comparison of strategies for Markov chain Monte Carlo computation in quantitative genetics
title_sort comparison of strategies for markov chain monte carlo computation in quantitative genetics
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2674923/
https://www.ncbi.nlm.nih.gov/pubmed/18298933
http://dx.doi.org/10.1186/1297-9686-40-2-161
work_keys_str_mv AT waagepetersenrasmus acomparisonofstrategiesformarkovchainmontecarlocomputationinquantitativegenetics
AT ibanezescrichenoelia acomparisonofstrategiesformarkovchainmontecarlocomputationinquantitativegenetics
AT sorensendaniel acomparisonofstrategiesformarkovchainmontecarlocomputationinquantitativegenetics
AT waagepetersenrasmus comparisonofstrategiesformarkovchainmontecarlocomputationinquantitativegenetics
AT ibanezescrichenoelia comparisonofstrategiesformarkovchainmontecarlocomputationinquantitativegenetics
AT sorensendaniel comparisonofstrategiesformarkovchainmontecarlocomputationinquantitativegenetics