Cargando…
An Empirical Study of Univariate and Genetic Algorithm-Based Feature Selection in Binary Classification with Microarray Data
BACKGROUND: We consider both univariate- and multivariate-based feature selection for the problem of binary classification with microarray data. The idea is to determine whether the more sophisticated multivariate approach leads to better misclassification error rates because of the potential to con...
Autores principales: | Lecocke, Michael, Hess, Kenneth |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2675488/ https://www.ncbi.nlm.nih.gov/pubmed/19458774 |
Ejemplares similares
-
Stable feature selection and classification algorithms for multiclass microarray data
por: Student, Sebastian, et al.
Publicado: (2012) -
Genetic algorithm-based feature selection with manifold learning for cancer classification using microarray data
por: Wang, Zixuan, et al.
Publicado: (2023) -
Cost-Constrained feature selection in binary classification: adaptations for greedy forward selection and genetic algorithms
por: Jagdhuber, Rudolf, et al.
Publicado: (2020) -
Cancer microarray data feature selection using multi-objective binary particle swarm optimization algorithm
por: Annavarapu, Chandra Sekhara Rao, et al.
Publicado: (2016) -
Empirical comparison of univariate and multivariate meta‐analyses in Cochrane Pregnancy and Childbirth reviews with multiple binary outcomes
por: Price, Malcolm J., et al.
Publicado: (2019)