Cargando…
Challenges in the Analysis of Mass-Throughput Data: A Technical Commentary from the Statistical Machine Learning Perspective
Sound data analysis is critical to the success of modern molecular medicine research that involves collection and interpretation of mass-throughput data. The novel nature and high-dimensionality in such datasets pose a series of nontrivial data analysis problems. This technical commentary discusses...
Autores principales: | Aliferis, Constantin F., Statnikov, Alexander, Tsamardinos, Ioannis |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2675497/ https://www.ncbi.nlm.nih.gov/pubmed/19458765 |
Ejemplares similares
-
Factors Influencing the Statistical Power of Complex Data Analysis Protocols for Molecular Signature Development from Microarray Data
por: Aliferis, Constantin F., et al.
Publicado: (2009) -
Challenges in Implementing the Local Node Infrastructure for a National Federated Machine Learning Network in Radiology
por: Jacobs, Paul-Philipp, et al.
Publicado: (2023) -
The FAST-AIMS Clinical Mass Spectrometry Analysis System
por: Fananapazir, Nafeh, et al.
Publicado: (2009) -
A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification
por: Statnikov, Alexander, et al.
Publicado: (2008) -
An automated plasma protein fractionation design: high-throughput perspectives for proteomic analysis
por: Boccardi, Claudia, et al.
Publicado: (2012)