Cargando…
Merging microarray data, robust feature selection, and predicting prognosis in prostate cancer
MOTIVATION: Individual microarray studies searching for prognostic biomarkers often have few samples and low statistical power; however, publicly accessible data sets make it possible to combine data across studies. METHOD: We present a novel approach for combining microarray data across institution...
Autores principales: | Wang, Jing, Do, Kim Anh, Wen, Sijin, Tsavachidis, Spyros, McDonnell, Timothy J., Logothetis, Christopher J., Coombes, Kevin R. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2675498/ https://www.ncbi.nlm.nih.gov/pubmed/19458761 |
Ejemplares similares
-
Biomarker expression patterns that correlate with high grade features in treatment naive, organ-confined prostate cancer
por: McDonnell, Timothy J, et al.
Publicado: (2008) -
Merging microarray data from separate breast cancer studies provides a robust prognostic test
por: Xu, Lei, et al.
Publicado: (2008) -
Merged consensus clustering to assess and improve class discovery with microarray data
por: Simpson, T Ian, et al.
Publicado: (2010) -
A Fast and Robust Ellipse-Detection Method Based on Sorted Merging
por: Wang, Gangyi, et al.
Publicado: (2014) -
Clustering by fast search and merge of local density peaks for gene expression microarray data
por: Mehmood, Rashid, et al.
Publicado: (2017)