Cargando…

Epithelial-to-Mesenchymal Transition in the Development and Progression of Adenocarcinoma and Squamous Cell Carcinoma of the Lung

Epithelial-to-mesenchymal transition is a process in which cells undergo a developmental switch from an epithelial to a mesenchymal phenotype. We investigated the role of this phenomenon in the pathogenesis and progression of adenocarcinoma and squamous cell carcinoma of the lung. Archived tissue fr...

Descripción completa

Detalles Bibliográficos
Autores principales: Prudkin, Ludmila, Liu, Diane, Ozburn, Natalie C., Sun, Menghong, Behrens, Carmen, Tang, Ximing, Brown, Kathlynn C., Bekele, B. Nebiyou, Moran, Cesar, Wistuba, Ignacio I.
Formato: Texto
Lenguaje:English
Publicado: 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2675657/
https://www.ncbi.nlm.nih.gov/pubmed/19270647
http://dx.doi.org/10.1038/modpathol.2009.19
Descripción
Sumario:Epithelial-to-mesenchymal transition is a process in which cells undergo a developmental switch from an epithelial to a mesenchymal phenotype. We investigated the role of this phenomenon in the pathogenesis and progression of adenocarcinoma and squamous cell carcinoma of the lung. Archived tissue from primary tumors (n=325) and brain metastases (n=48) and adjacent bronchial epithelial specimens (n=192) were analyzed for immunohistochemical expression by image analysis of E-cadherin, N-cadherin, integrin-αvβ6, vimentin, and matrix metalloproteinase-9. The findings were compared with patients’ clinicopathologic features. High expression of the epithelial-to-mesenchymal transition phenotype (low E-cadherin and high N-cadherin, integrin-αvβ6, vimentin, and matrix metalloproteinase-9) was found in most lung tumors examined, and the expression pattern varied according to the tumor histologic type. Low E-cadherin membrane and high N-cadherin cytoplasmic expression were significantly more common in squamous cell carcinoma than in adenocarcinoma (P=0.002 and 0.005, respectively). Dysplastic lesions had significantly lower expression of the epithelial-to-mesenchymal transition phenotype than did squamous cell carcinomas, and integrin-αvβ6 membrane expression increased stepwise according to the histopathologic severity. Brain metastases had decreased epithelial-to-mesenchymal transition expression compared with primary tumors. Brain metastases had significantly lower integrin-αvβ6 membrane (P=0.04) and N-cadherin membrane and cytoplasm (P<0.0002) expression than did primary tumors. The epithelial-to-mesenchymal transition phenotype is commonly expressed in primary squamous cell carcinoma and adenocarcinoma of the lung; this expression occurs early in the pathogenesis of squamous cell carcinoma. Brain metastases showed characteristics of reversed mesenchymal-to-epithelial transition. Our findings suggest that epithelial-to-mesenchymal transition is a potential target for lung cancer chemoprevention and therapy.