Cargando…
Biological and clinical characterization of paclitaxel poliglumex (PPX, CT-2103), a macromolecular polymer–drug conjugate
Paclitaxel is a widely used chemotherapeutic agent; however, its therapeutic index is limited by low tumor exposure and high systemic exposure. Paclitaxel poliglumex (PPX) is macromolecular drug conjugate that links paclitaxel with a biodegradable polymer, poly-L-glutamic acid. PPX enhances tumor ex...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2676644/ https://www.ncbi.nlm.nih.gov/pubmed/17722272 |
Sumario: | Paclitaxel is a widely used chemotherapeutic agent; however, its therapeutic index is limited by low tumor exposure and high systemic exposure. Paclitaxel poliglumex (PPX) is macromolecular drug conjugate that links paclitaxel with a biodegradable polymer, poly-L-glutamic acid. PPX enhances tumor exposure by taking advantage of the hyperpermeable vasculature and suppressed lymphatic clearance characteristic of tumor tissue. The release of paclitaxel from the polymeric backbone is, at least in part, dependent on the metabolism of PPX by the lysosomal protease cathepsin B, which is upregulated in many tumor types. Retrospective analysis of clinical data from two phase III trials in advanced lung cancer suggests that PPX activity may be modulated by estradiol: a trend toward improved survival in the PPX arm compared with the control arm was observed in female, but not in male patients. Estrogens are known to induce cathepsin B activity; cathepsin B-mediated proteolysis is a key enzymatic processing step in PPX metabolism. The association between estrogens and PPX activity is being further explored in ongoing preclinical studies. An addition phase III trial will enroll women with advanced NSCLC to prospectively evaluate the efficacy of PPX in relation to pre- and post-menopausal estrogen levels. |
---|