Cargando…
Visually Driven Activation in Macaque Areas V2 and V3 without Input from the Primary Visual Cortex
Creating focal lesions in primary visual cortex (V1) provides an opportunity to study the role of extra-geniculo-striate pathways for activating extrastriate visual cortex. Previous studies have shown that more than 95% of neurons in macaque area V2 and V3 stop firing after reversibly cooling V1 [1]...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2677457/ https://www.ncbi.nlm.nih.gov/pubmed/19436733 http://dx.doi.org/10.1371/journal.pone.0005527 |
_version_ | 1782166784643694592 |
---|---|
author | Schmid, Michael C. Panagiotaropoulos, Theofanis Augath, Mark A. Logothetis, Nikos K. Smirnakis, Stelios M. |
author_facet | Schmid, Michael C. Panagiotaropoulos, Theofanis Augath, Mark A. Logothetis, Nikos K. Smirnakis, Stelios M. |
author_sort | Schmid, Michael C. |
collection | PubMed |
description | Creating focal lesions in primary visual cortex (V1) provides an opportunity to study the role of extra-geniculo-striate pathways for activating extrastriate visual cortex. Previous studies have shown that more than 95% of neurons in macaque area V2 and V3 stop firing after reversibly cooling V1 [1], [2], [3]. However, no studies on long term recovery in areas V2, V3 following permanent V1 lesions have been reported in the macaque. Here we use macaque fMRI to study area V2, V3 activity patterns from 1 to 22 months after lesioning area V1. We find that visually driven BOLD responses persist inside the V1-lesion projection zones (LPZ) of areas V2 and V3, but are reduced in strength by ∼70%, on average, compared to pre-lesion levels. Monitoring the LPZ activity over time starting one month following the V1 lesion did not reveal systematic changes in BOLD signal amplitude. Surprisingly, the retinotopic organization inside the LPZ of areas V2, V3 remained similar to that of the non-lesioned hemisphere, suggesting that LPZ activation in V2, V3 is not the result of input arising from nearby (non-lesioned) V1 cortex. Electrophysiology recordings of multi-unit activity corroborated the BOLD observations: visually driven multi-unit responses could be elicited inside the V2 LPZ, even when the visual stimulus was entirely contained within the scotoma induced by the V1 lesion. Restricting the stimulus to the intact visual hemi-field produced no significant BOLD modulation inside the V2, V3 LPZs. We conclude that the observed activity patterns are largely mediated by parallel, V1-bypassing, subcortical pathways that can activate areas V2 and V3 in the absence of V1 input. Such pathways may contribute to the behavioral phenomenon of blindsight. |
format | Text |
id | pubmed-2677457 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-26774572009-05-13 Visually Driven Activation in Macaque Areas V2 and V3 without Input from the Primary Visual Cortex Schmid, Michael C. Panagiotaropoulos, Theofanis Augath, Mark A. Logothetis, Nikos K. Smirnakis, Stelios M. PLoS One Research Article Creating focal lesions in primary visual cortex (V1) provides an opportunity to study the role of extra-geniculo-striate pathways for activating extrastriate visual cortex. Previous studies have shown that more than 95% of neurons in macaque area V2 and V3 stop firing after reversibly cooling V1 [1], [2], [3]. However, no studies on long term recovery in areas V2, V3 following permanent V1 lesions have been reported in the macaque. Here we use macaque fMRI to study area V2, V3 activity patterns from 1 to 22 months after lesioning area V1. We find that visually driven BOLD responses persist inside the V1-lesion projection zones (LPZ) of areas V2 and V3, but are reduced in strength by ∼70%, on average, compared to pre-lesion levels. Monitoring the LPZ activity over time starting one month following the V1 lesion did not reveal systematic changes in BOLD signal amplitude. Surprisingly, the retinotopic organization inside the LPZ of areas V2, V3 remained similar to that of the non-lesioned hemisphere, suggesting that LPZ activation in V2, V3 is not the result of input arising from nearby (non-lesioned) V1 cortex. Electrophysiology recordings of multi-unit activity corroborated the BOLD observations: visually driven multi-unit responses could be elicited inside the V2 LPZ, even when the visual stimulus was entirely contained within the scotoma induced by the V1 lesion. Restricting the stimulus to the intact visual hemi-field produced no significant BOLD modulation inside the V2, V3 LPZs. We conclude that the observed activity patterns are largely mediated by parallel, V1-bypassing, subcortical pathways that can activate areas V2 and V3 in the absence of V1 input. Such pathways may contribute to the behavioral phenomenon of blindsight. Public Library of Science 2009-05-13 /pmc/articles/PMC2677457/ /pubmed/19436733 http://dx.doi.org/10.1371/journal.pone.0005527 Text en Schmid et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Schmid, Michael C. Panagiotaropoulos, Theofanis Augath, Mark A. Logothetis, Nikos K. Smirnakis, Stelios M. Visually Driven Activation in Macaque Areas V2 and V3 without Input from the Primary Visual Cortex |
title | Visually Driven Activation in Macaque Areas V2 and V3 without Input from the Primary Visual Cortex |
title_full | Visually Driven Activation in Macaque Areas V2 and V3 without Input from the Primary Visual Cortex |
title_fullStr | Visually Driven Activation in Macaque Areas V2 and V3 without Input from the Primary Visual Cortex |
title_full_unstemmed | Visually Driven Activation in Macaque Areas V2 and V3 without Input from the Primary Visual Cortex |
title_short | Visually Driven Activation in Macaque Areas V2 and V3 without Input from the Primary Visual Cortex |
title_sort | visually driven activation in macaque areas v2 and v3 without input from the primary visual cortex |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2677457/ https://www.ncbi.nlm.nih.gov/pubmed/19436733 http://dx.doi.org/10.1371/journal.pone.0005527 |
work_keys_str_mv | AT schmidmichaelc visuallydrivenactivationinmacaqueareasv2andv3withoutinputfromtheprimaryvisualcortex AT panagiotaropoulostheofanis visuallydrivenactivationinmacaqueareasv2andv3withoutinputfromtheprimaryvisualcortex AT augathmarka visuallydrivenactivationinmacaqueareasv2andv3withoutinputfromtheprimaryvisualcortex AT logothetisnikosk visuallydrivenactivationinmacaqueareasv2andv3withoutinputfromtheprimaryvisualcortex AT smirnakissteliosm visuallydrivenactivationinmacaqueareasv2andv3withoutinputfromtheprimaryvisualcortex |