Cargando…
A core gut microbiome in obese and lean twins
The human distal gut harbors a vast ensemble of microbes (the microbiota) that provide us with important metabolic capabilities, including the ability to extract energy from otherwise indigestible dietary polysaccharides1–6. Studies of a small number of unrelated, healthy adults have revealed substa...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2677729/ https://www.ncbi.nlm.nih.gov/pubmed/19043404 http://dx.doi.org/10.1038/nature07540 |
_version_ | 1782166793848094720 |
---|---|
author | Turnbaugh, Peter J. Hamady, Micah Yatsunenko, Tanya Cantarel, Brandi L. Duncan, Alexis Ley, Ruth E. Sogin, Mitchell L. Jones, William J. Roe, Bruce A. Affourtit, Jason P. Egholm, Michael Henrissat, Bernard Heath, Andrew C. Knight, Rob Gordon, Jeffrey I. |
author_facet | Turnbaugh, Peter J. Hamady, Micah Yatsunenko, Tanya Cantarel, Brandi L. Duncan, Alexis Ley, Ruth E. Sogin, Mitchell L. Jones, William J. Roe, Bruce A. Affourtit, Jason P. Egholm, Michael Henrissat, Bernard Heath, Andrew C. Knight, Rob Gordon, Jeffrey I. |
author_sort | Turnbaugh, Peter J. |
collection | PubMed |
description | The human distal gut harbors a vast ensemble of microbes (the microbiota) that provide us with important metabolic capabilities, including the ability to extract energy from otherwise indigestible dietary polysaccharides1–6. Studies of a small number of unrelated, healthy adults have revealed substantial diversity in their gut communities, as measured by sequencing 16S rRNA genes6–8, yet how this diversity relates to function and to the rest of the genes in the collective genomes of the microbiota (the gut microbiome) remains obscure. Studies of lean and obese mice suggest that the gut microbiota affects energy balance by influencing the efficiency of calorie harvest from the diet, and how this harvested energy is utilized and stored3–5. To address the question of how host genotype, environmental exposures, and host adiposity influence the gut microbiome, we have characterized the fecal microbial communities of adult female monozygotic and dizygotic twin pairs concordant for leanness or obesity, and their mothers. Analysis of 154 individuals yielded 9,920 near full-length and 1,937,461 partial bacterial 16S rRNA sequences, plus 2.14 gigabases from their microbiomes. The results reveal that the human gut microbiome is shared among family members, but that each person’s gut microbial community varies in the specific bacterial lineages present, with a comparable degree of co-variation between adult monozygotic and dizygotic twin pairs. However, there was a wide array of shared microbial genes among sampled individuals, comprising an extensive, identifiable ‘core microbiome’ at the gene, rather than at the organismal lineage level. Obesity is associated with phylum-level changes in the microbiota, reduced bacterial diversity, and altered representation of bacterial genes and metabolic pathways. These results demonstrate that a diversity of organismal assemblages can nonetheless yield a core microbiome at a functional level, and that deviations from this core are associated with different physiologic states (obese versus lean). |
format | Text |
id | pubmed-2677729 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
record_format | MEDLINE/PubMed |
spelling | pubmed-26777292009-07-22 A core gut microbiome in obese and lean twins Turnbaugh, Peter J. Hamady, Micah Yatsunenko, Tanya Cantarel, Brandi L. Duncan, Alexis Ley, Ruth E. Sogin, Mitchell L. Jones, William J. Roe, Bruce A. Affourtit, Jason P. Egholm, Michael Henrissat, Bernard Heath, Andrew C. Knight, Rob Gordon, Jeffrey I. Nature Article The human distal gut harbors a vast ensemble of microbes (the microbiota) that provide us with important metabolic capabilities, including the ability to extract energy from otherwise indigestible dietary polysaccharides1–6. Studies of a small number of unrelated, healthy adults have revealed substantial diversity in their gut communities, as measured by sequencing 16S rRNA genes6–8, yet how this diversity relates to function and to the rest of the genes in the collective genomes of the microbiota (the gut microbiome) remains obscure. Studies of lean and obese mice suggest that the gut microbiota affects energy balance by influencing the efficiency of calorie harvest from the diet, and how this harvested energy is utilized and stored3–5. To address the question of how host genotype, environmental exposures, and host adiposity influence the gut microbiome, we have characterized the fecal microbial communities of adult female monozygotic and dizygotic twin pairs concordant for leanness or obesity, and their mothers. Analysis of 154 individuals yielded 9,920 near full-length and 1,937,461 partial bacterial 16S rRNA sequences, plus 2.14 gigabases from their microbiomes. The results reveal that the human gut microbiome is shared among family members, but that each person’s gut microbial community varies in the specific bacterial lineages present, with a comparable degree of co-variation between adult monozygotic and dizygotic twin pairs. However, there was a wide array of shared microbial genes among sampled individuals, comprising an extensive, identifiable ‘core microbiome’ at the gene, rather than at the organismal lineage level. Obesity is associated with phylum-level changes in the microbiota, reduced bacterial diversity, and altered representation of bacterial genes and metabolic pathways. These results demonstrate that a diversity of organismal assemblages can nonetheless yield a core microbiome at a functional level, and that deviations from this core are associated with different physiologic states (obese versus lean). 2008-11-30 2009-01-22 /pmc/articles/PMC2677729/ /pubmed/19043404 http://dx.doi.org/10.1038/nature07540 Text en http://www.nature.com/authors/editorial_policies/license.html#terms Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Turnbaugh, Peter J. Hamady, Micah Yatsunenko, Tanya Cantarel, Brandi L. Duncan, Alexis Ley, Ruth E. Sogin, Mitchell L. Jones, William J. Roe, Bruce A. Affourtit, Jason P. Egholm, Michael Henrissat, Bernard Heath, Andrew C. Knight, Rob Gordon, Jeffrey I. A core gut microbiome in obese and lean twins |
title | A core gut microbiome in obese and lean twins |
title_full | A core gut microbiome in obese and lean twins |
title_fullStr | A core gut microbiome in obese and lean twins |
title_full_unstemmed | A core gut microbiome in obese and lean twins |
title_short | A core gut microbiome in obese and lean twins |
title_sort | core gut microbiome in obese and lean twins |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2677729/ https://www.ncbi.nlm.nih.gov/pubmed/19043404 http://dx.doi.org/10.1038/nature07540 |
work_keys_str_mv | AT turnbaughpeterj acoregutmicrobiomeinobeseandleantwins AT hamadymicah acoregutmicrobiomeinobeseandleantwins AT yatsunenkotanya acoregutmicrobiomeinobeseandleantwins AT cantarelbrandil acoregutmicrobiomeinobeseandleantwins AT duncanalexis acoregutmicrobiomeinobeseandleantwins AT leyruthe acoregutmicrobiomeinobeseandleantwins AT soginmitchelll acoregutmicrobiomeinobeseandleantwins AT joneswilliamj acoregutmicrobiomeinobeseandleantwins AT roebrucea acoregutmicrobiomeinobeseandleantwins AT affourtitjasonp acoregutmicrobiomeinobeseandleantwins AT egholmmichael acoregutmicrobiomeinobeseandleantwins AT henrissatbernard acoregutmicrobiomeinobeseandleantwins AT heathandrewc acoregutmicrobiomeinobeseandleantwins AT knightrob acoregutmicrobiomeinobeseandleantwins AT gordonjeffreyi acoregutmicrobiomeinobeseandleantwins AT turnbaughpeterj coregutmicrobiomeinobeseandleantwins AT hamadymicah coregutmicrobiomeinobeseandleantwins AT yatsunenkotanya coregutmicrobiomeinobeseandleantwins AT cantarelbrandil coregutmicrobiomeinobeseandleantwins AT duncanalexis coregutmicrobiomeinobeseandleantwins AT leyruthe coregutmicrobiomeinobeseandleantwins AT soginmitchelll coregutmicrobiomeinobeseandleantwins AT joneswilliamj coregutmicrobiomeinobeseandleantwins AT roebrucea coregutmicrobiomeinobeseandleantwins AT affourtitjasonp coregutmicrobiomeinobeseandleantwins AT egholmmichael coregutmicrobiomeinobeseandleantwins AT henrissatbernard coregutmicrobiomeinobeseandleantwins AT heathandrewc coregutmicrobiomeinobeseandleantwins AT knightrob coregutmicrobiomeinobeseandleantwins AT gordonjeffreyi coregutmicrobiomeinobeseandleantwins |