Cargando…
Rapid antibody selection by mRNA display on a microfluidic chip
In vitro antibody-display technologies are powerful approaches for isolating monoclonal antibodies from recombinant antibody libraries. However, these display techniques require several rounds of affinity selection which is time-consuming. Here, we combined mRNA display with a microfluidic system fo...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2677893/ https://www.ncbi.nlm.nih.gov/pubmed/19336414 http://dx.doi.org/10.1093/nar/gkp184 |
Sumario: | In vitro antibody-display technologies are powerful approaches for isolating monoclonal antibodies from recombinant antibody libraries. However, these display techniques require several rounds of affinity selection which is time-consuming. Here, we combined mRNA display with a microfluidic system for in vitro selection and evolution of antibodies and achieved ultrahigh enrichment efficiency of 10(6)- to 10(8)-fold per round. After only one or two rounds of selection, antibodies with high affinity and specificity were obtained from naïve and randomized single-chain Fv libraries of ∼10(12) molecules. Furthermore, we confirmed that not only protein–protein (antigen–antibody) interactions, but also protein–DNA and protein–drug interactions were selected with ultrahigh efficiencies. This method will facilitate high-throughput preparation of antibodies and identification of protein interactions in proteomic and therapeutic fields. |
---|