Cargando…

100 ps time-resolved solution scattering utilizing a wide-bandwidth X-ray beam from multilayer optics

100 ps time-resolved X-ray solution-scattering capabilities have been developed using multilayer optics at the beamline NW14A, Photon Factory Advanced Ring, KEK. X-ray pulses with an energy bandwidth of ΔE/E = 1–5% are generated by reflecting X-ray pulses (ΔE/E = 15%) through multilayer optics, made...

Descripción completa

Detalles Bibliográficos
Autores principales: Ichiyanagi, K., Sato, T., Nozawa, S., Kim, K. H., Lee, J. H., Choi, J., Tomita, A., Ichikawa, H., Adachi, S., Ihee, H., Koshihara, S.
Formato: Texto
Lenguaje:English
Publicado: International Union of Crystallography 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2678014/
https://www.ncbi.nlm.nih.gov/pubmed/19395804
http://dx.doi.org/10.1107/S0909049509005986
Descripción
Sumario:100 ps time-resolved X-ray solution-scattering capabilities have been developed using multilayer optics at the beamline NW14A, Photon Factory Advanced Ring, KEK. X-ray pulses with an energy bandwidth of ΔE/E = 1–5% are generated by reflecting X-ray pulses (ΔE/E = 15%) through multilayer optics, made of W/B(4)C or depth-graded Ru/C on silicon substrate. This tailor-made wide-bandwidth X-ray pulse provides high-quality solution-scattering data for obtaining photo-induced molecular reaction dynamics. The time-resolved solution scattering of CH(2)I(2) in methanol is demonstrated as a typical example.