Cargando…
X-ray diffractometry for the structure determination of a submicrometre single powder grain
A high-precision diffractometer has been developed for the structure analysis of a submicrometre-scale single grain of a powder sample at the SPring-8 BL40XU undulator beamline. The key design concept is the combination of a stable focused synchrotron radiation beam and the precise axis control of t...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2678016/ https://www.ncbi.nlm.nih.gov/pubmed/19395798 http://dx.doi.org/10.1107/S090904950900675X |
Sumario: | A high-precision diffractometer has been developed for the structure analysis of a submicrometre-scale single grain of a powder sample at the SPring-8 BL40XU undulator beamline. The key design concept is the combination of a stable focused synchrotron radiation beam and the precise axis control of the diffractometer, which allows accurate diffraction intensity data of a submicrometre-scale single powder grain to be measured. The phase zone plate was designed to create a high-flux focused synchrotron radiation beam. A low-eccentric goniometer and high-precision sample positioning stages were adopted to ensure the alignment of a micrometre-scale focused synchrotron radiation beam onto the submicrometre-scale single powder grain. In order to verify the diffractometer performance, the diffraction pattern data of several powder grains of BaTiO(3), of dimensions ∼600 × 600 × 300 nm, were measured. By identifying the diffraction data set of one single powder grain, the crystal structure was successfully determined with a reliable factor of 5.24%. |
---|