Cargando…

In vivo evaluation of a vibration analysis technique for the per-operative monitoring of the fixation of hip prostheses

BACKGROUND: The per-operative assessment of primary stem stability may help to improve the performance of total hip replacement. Vibration analysis methods have been successfully used to assess dental implant stability, to monitor fracture healing and to measure bone mechanical properties. The objec...

Descripción completa

Detalles Bibliográficos
Autores principales: Pastrav, Leonard C, Jaecques, Siegfried VN, Jonkers, Ilse, Perre, Georges Van der, Mulier, Michiel
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2678089/
https://www.ncbi.nlm.nih.gov/pubmed/19358703
http://dx.doi.org/10.1186/1749-799X-4-10
_version_ 1782166815040864256
author Pastrav, Leonard C
Jaecques, Siegfried VN
Jonkers, Ilse
Perre, Georges Van der
Mulier, Michiel
author_facet Pastrav, Leonard C
Jaecques, Siegfried VN
Jonkers, Ilse
Perre, Georges Van der
Mulier, Michiel
author_sort Pastrav, Leonard C
collection PubMed
description BACKGROUND: The per-operative assessment of primary stem stability may help to improve the performance of total hip replacement. Vibration analysis methods have been successfully used to assess dental implant stability, to monitor fracture healing and to measure bone mechanical properties. The objective of the present study was to evaluate in vivo a vibration analysis-based endpoint criterion for the insertion of the stem by successive surgeon-controlled hammer blows. METHODS: A protocol using a vibration analysis technique for the characterisation of the primary bone-prosthesis stability was tested in 83 patients receiving a custom-made, intra-operatively manufactured stem prosthesis. Two groups were studied: one (n = 30) with non cemented and one (n = 53) with partially cemented stem fixation. Frequency response functions of the stem-femur system corresponding to successive insertion stages were compared. RESULTS: The correlation coefficient between the last two frequency response function curves was above 0.99 in 86.7% of the non cemented cases. Lower values of the final correlation coefficient and deviations in the frequency response pattern were associated with instability or impending bone fracture. In the cases with a partially cemented stem an important difference in frequency response function between the final stage of non cemented trial insertion and the final cemented stage was found in 84.9% of the cases. Furthermore, the frequency response function varied with the degree of cement curing. CONCLUSION: The frequency response function change provides reliable information regarding the stability evolution of the stem-femur system during the insertion. The protocol described in this paper can be used to accurately detect the insertion end point and to reduce the risk for intra-operative fracture.
format Text
id pubmed-2678089
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-26780892009-05-07 In vivo evaluation of a vibration analysis technique for the per-operative monitoring of the fixation of hip prostheses Pastrav, Leonard C Jaecques, Siegfried VN Jonkers, Ilse Perre, Georges Van der Mulier, Michiel J Orthop Surg Res Research Article BACKGROUND: The per-operative assessment of primary stem stability may help to improve the performance of total hip replacement. Vibration analysis methods have been successfully used to assess dental implant stability, to monitor fracture healing and to measure bone mechanical properties. The objective of the present study was to evaluate in vivo a vibration analysis-based endpoint criterion for the insertion of the stem by successive surgeon-controlled hammer blows. METHODS: A protocol using a vibration analysis technique for the characterisation of the primary bone-prosthesis stability was tested in 83 patients receiving a custom-made, intra-operatively manufactured stem prosthesis. Two groups were studied: one (n = 30) with non cemented and one (n = 53) with partially cemented stem fixation. Frequency response functions of the stem-femur system corresponding to successive insertion stages were compared. RESULTS: The correlation coefficient between the last two frequency response function curves was above 0.99 in 86.7% of the non cemented cases. Lower values of the final correlation coefficient and deviations in the frequency response pattern were associated with instability or impending bone fracture. In the cases with a partially cemented stem an important difference in frequency response function between the final stage of non cemented trial insertion and the final cemented stage was found in 84.9% of the cases. Furthermore, the frequency response function varied with the degree of cement curing. CONCLUSION: The frequency response function change provides reliable information regarding the stability evolution of the stem-femur system during the insertion. The protocol described in this paper can be used to accurately detect the insertion end point and to reduce the risk for intra-operative fracture. BioMed Central 2009-04-09 /pmc/articles/PMC2678089/ /pubmed/19358703 http://dx.doi.org/10.1186/1749-799X-4-10 Text en Copyright © 2009 Pastrav et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Pastrav, Leonard C
Jaecques, Siegfried VN
Jonkers, Ilse
Perre, Georges Van der
Mulier, Michiel
In vivo evaluation of a vibration analysis technique for the per-operative monitoring of the fixation of hip prostheses
title In vivo evaluation of a vibration analysis technique for the per-operative monitoring of the fixation of hip prostheses
title_full In vivo evaluation of a vibration analysis technique for the per-operative monitoring of the fixation of hip prostheses
title_fullStr In vivo evaluation of a vibration analysis technique for the per-operative monitoring of the fixation of hip prostheses
title_full_unstemmed In vivo evaluation of a vibration analysis technique for the per-operative monitoring of the fixation of hip prostheses
title_short In vivo evaluation of a vibration analysis technique for the per-operative monitoring of the fixation of hip prostheses
title_sort in vivo evaluation of a vibration analysis technique for the per-operative monitoring of the fixation of hip prostheses
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2678089/
https://www.ncbi.nlm.nih.gov/pubmed/19358703
http://dx.doi.org/10.1186/1749-799X-4-10
work_keys_str_mv AT pastravleonardc invivoevaluationofavibrationanalysistechniquefortheperoperativemonitoringofthefixationofhipprostheses
AT jaecquessiegfriedvn invivoevaluationofavibrationanalysistechniquefortheperoperativemonitoringofthefixationofhipprostheses
AT jonkersilse invivoevaluationofavibrationanalysistechniquefortheperoperativemonitoringofthefixationofhipprostheses
AT perregeorgesvander invivoevaluationofavibrationanalysistechniquefortheperoperativemonitoringofthefixationofhipprostheses
AT muliermichiel invivoevaluationofavibrationanalysistechniquefortheperoperativemonitoringofthefixationofhipprostheses