Cargando…

A “Shallow Phylogeny” of Shallow Barnacles (Chthamalus)

BACKGROUND: We present a multi-locus phylogenetic analysis of the shallow water (high intertidal) barnacle genus Chthamalus, focusing on member species in the western hemisphere. Understanding the phylogeny of this group improves interpretation of classical ecological work on competition, distributi...

Descripción completa

Detalles Bibliográficos
Autores principales: Wares, John P., Pankey, M. Sabrina, Pitombo, Fabio, Daglio, Liza Gómez, Achituv, Yair
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2678261/
https://www.ncbi.nlm.nih.gov/pubmed/19440543
http://dx.doi.org/10.1371/journal.pone.0005567
Descripción
Sumario:BACKGROUND: We present a multi-locus phylogenetic analysis of the shallow water (high intertidal) barnacle genus Chthamalus, focusing on member species in the western hemisphere. Understanding the phylogeny of this group improves interpretation of classical ecological work on competition, distributional changes associated with climate change, and the morphological evolution of complex cirripede phenotypes. METHODOLOGY AND FINDINGS: We use traditional and Bayesian phylogenetic and ‘deep coalescent’ approaches to identify a phylogeny that supports the monophyly of the mostly American ‘fissus group’ of Chthamalus, but that also supports a need for taxonomic revision of Chthamalus and Microeuraphia. Two deep phylogeographic breaks were also found within the range of two tropical American taxa (C. angustitergum and C. southwardorum) as well. CONCLUSIONS: Our data, which include two novel gene regions for phylogenetic analysis of cirripedes, suggest that much more evaluation of the morphological evolutionary history and taxonomy of Chthamalid barnacles is necessary. These data and associated analyses also indicate that the radiation of species in the late Pliocene and Pleistocene was very rapid, and may provide new insights toward speciation via transient allopatry or ecological barriers.