Cargando…
Microwave-Accelerated and Metal-Enhanced Fluorescence Myoglobin Detection on Silvered Surfaces: Potential Application to Myocardial Infarction Diagnosis
In this short paper, we describe a novel approach to both significantly accelerate and optically amplify fluorescence-based immunoassays. Our approach utilizes metal-enhanced fluorescence (MEF) to intrinsically optically amplify fluorescence signatures, which, when combined with the use of low-power...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Kluwer Academic Publishers-Plenum Publishers
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2678713/ https://www.ncbi.nlm.nih.gov/pubmed/19444320 http://dx.doi.org/10.1007/s11468-006-9006-7 |
_version_ | 1782166848684425216 |
---|---|
author | Aslan, Kadir Geddes, Chris D. |
author_facet | Aslan, Kadir Geddes, Chris D. |
author_sort | Aslan, Kadir |
collection | PubMed |
description | In this short paper, we describe a novel approach to both significantly accelerate and optically amplify fluorescence-based immunoassays. Our approach utilizes metal-enhanced fluorescence (MEF) to intrinsically optically amplify fluorescence signatures, which, when combined with the use of low-power microwaves to kinetically accelerate assays, provides for both ultrafast and ultrabright immunoassays. Surprisingly, the use of low-power microwaves and silver nanostructures provides for localized heating, concentrating the effect to the particles themselves as compared to the generic heating of the high dielectric assay fluid. We have subsequently applied our microwave-accelerated MEF approach to the detection of myoglobin, where its rapid quantification is paramount for the clinical assessment of an acute myocardial infarction. |
format | Text |
id | pubmed-2678713 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2006 |
publisher | Kluwer Academic Publishers-Plenum Publishers |
record_format | MEDLINE/PubMed |
spelling | pubmed-26787132009-05-13 Microwave-Accelerated and Metal-Enhanced Fluorescence Myoglobin Detection on Silvered Surfaces: Potential Application to Myocardial Infarction Diagnosis Aslan, Kadir Geddes, Chris D. Plasmonics Rapid Communication In this short paper, we describe a novel approach to both significantly accelerate and optically amplify fluorescence-based immunoassays. Our approach utilizes metal-enhanced fluorescence (MEF) to intrinsically optically amplify fluorescence signatures, which, when combined with the use of low-power microwaves to kinetically accelerate assays, provides for both ultrafast and ultrabright immunoassays. Surprisingly, the use of low-power microwaves and silver nanostructures provides for localized heating, concentrating the effect to the particles themselves as compared to the generic heating of the high dielectric assay fluid. We have subsequently applied our microwave-accelerated MEF approach to the detection of myoglobin, where its rapid quantification is paramount for the clinical assessment of an acute myocardial infarction. Kluwer Academic Publishers-Plenum Publishers 2006-03-01 2006-03 /pmc/articles/PMC2678713/ /pubmed/19444320 http://dx.doi.org/10.1007/s11468-006-9006-7 Text en © Springer Science+Business Media, Inc. 2006 |
spellingShingle | Rapid Communication Aslan, Kadir Geddes, Chris D. Microwave-Accelerated and Metal-Enhanced Fluorescence Myoglobin Detection on Silvered Surfaces: Potential Application to Myocardial Infarction Diagnosis |
title | Microwave-Accelerated and Metal-Enhanced Fluorescence Myoglobin Detection on Silvered Surfaces: Potential Application to Myocardial Infarction Diagnosis |
title_full | Microwave-Accelerated and Metal-Enhanced Fluorescence Myoglobin Detection on Silvered Surfaces: Potential Application to Myocardial Infarction Diagnosis |
title_fullStr | Microwave-Accelerated and Metal-Enhanced Fluorescence Myoglobin Detection on Silvered Surfaces: Potential Application to Myocardial Infarction Diagnosis |
title_full_unstemmed | Microwave-Accelerated and Metal-Enhanced Fluorescence Myoglobin Detection on Silvered Surfaces: Potential Application to Myocardial Infarction Diagnosis |
title_short | Microwave-Accelerated and Metal-Enhanced Fluorescence Myoglobin Detection on Silvered Surfaces: Potential Application to Myocardial Infarction Diagnosis |
title_sort | microwave-accelerated and metal-enhanced fluorescence myoglobin detection on silvered surfaces: potential application to myocardial infarction diagnosis |
topic | Rapid Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2678713/ https://www.ncbi.nlm.nih.gov/pubmed/19444320 http://dx.doi.org/10.1007/s11468-006-9006-7 |
work_keys_str_mv | AT aslankadir microwaveacceleratedandmetalenhancedfluorescencemyoglobindetectiononsilveredsurfacespotentialapplicationtomyocardialinfarctiondiagnosis AT geddeschrisd microwaveacceleratedandmetalenhancedfluorescencemyoglobindetectiononsilveredsurfacespotentialapplicationtomyocardialinfarctiondiagnosis |