Cargando…
Ranking differentially expressed genes from Affymetrix gene expression data: methods with reproducibility, sensitivity, and specificity
BACKGROUND: To identify differentially expressed genes (DEGs) from microarray data, users of the Affymetrix GeneChip system need to select both a preprocessing algorithm to obtain expression-level measurements and a way of ranking genes to obtain the most plausible candidates. We recently recommende...
Autores principales: | Kadota, Koji, Nakai, Yuji, Shimizu, Kentaro |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2679019/ https://www.ncbi.nlm.nih.gov/pubmed/19386098 http://dx.doi.org/10.1186/1748-7188-4-7 |
Ejemplares similares
-
Evaluating methods for ranking differentially expressed genes applied to microArray quality control data
por: Kadota, Koji, et al.
Publicado: (2011) -
A weighted average difference method for detecting differentially expressed genes from microarray data
por: Kadota, Koji, et al.
Publicado: (2008) -
Reproducibility of gene expression across generations of Affymetrix microarrays
por: Nimgaonkar, Ashish, et al.
Publicado: (2003) -
ROKU: a novel method for identification of tissue-specific genes
por: Kadota, Koji, et al.
Publicado: (2006) -
Methods for evaluating gene expression from Affymetrix microarray datasets
por: Jiang, Ning, et al.
Publicado: (2008)