Cargando…

Brain-Machine Interactions for Assessing the Dynamics of Neural Systems

A critical advance for brain–machine interfaces is the establishment of bi-directional communications between the nervous system and external devices. However, the signals generated by a population of neurons are expected to depend in a complex way upon poorly understood neural dynamics. We report a...

Descripción completa

Detalles Bibliográficos
Autores principales: Kositsky, Michael, Chiappalone, Michela, Alford, Simon T., Mussa-Ivaldi, Ferdinando A.
Formato: Texto
Lenguaje:English
Publicado: Frontiers Research Foundation 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2679156/
https://www.ncbi.nlm.nih.gov/pubmed/19430593
http://dx.doi.org/10.3389/neuro.12.001.2009
Descripción
Sumario:A critical advance for brain–machine interfaces is the establishment of bi-directional communications between the nervous system and external devices. However, the signals generated by a population of neurons are expected to depend in a complex way upon poorly understood neural dynamics. We report a new technique for the identification of the dynamics of a neural population engaged in a bi-directional interaction with an external device. We placed in vitro preparations from the lamprey brainstem in a closed-loop interaction with simulated dynamical devices having different numbers of degrees of freedom. We used the observed behaviors of this composite system to assess how many independent parameters − or state variables − determine at each instant the output of the neural system. This information, known as the dynamical dimension of a system, allows predicting future behaviors based on the present state and the future inputs. A relevant novelty in this approach is the possibility to assess a computational property – the dynamical dimension of a neuronal population – through a simple experimental technique based on the bi-directional interaction with simulated dynamical devices. We present a set of results that demonstrate the possibility of obtaining stable and reliable measures of the dynamical dimension of a neural preparation.