Cargando…
Multiple adverse thyroid and metabolic health signs in the population from the area heavily polluted by organochlorine cocktail (PCB, DDE, HCB, dioxin)
BACKGROUND: Several our previous studies showed associations of increasing blood level of persistent organochlorinated pollutants (POPs) with individual thyroid and metabolic adverse health signs in subjects from heavily polluted area (POLL) compared to these from the area of background pollution (B...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2679721/ https://www.ncbi.nlm.nih.gov/pubmed/19335881 http://dx.doi.org/10.1186/1756-6614-2-3 |
Sumario: | BACKGROUND: Several our previous studies showed associations of increasing blood level of persistent organochlorinated pollutants (POPs) with individual thyroid and metabolic adverse health signs in subjects from heavily polluted area (POLL) compared to these from the area of background pollution (BCGR). In this study we present increasing number of subjects with multiple adverse signs positively associated with blood level of polychlorinated biphenyls (PCBs) which is used as a marker of other POPs cocktail. METHODS: In a total of 2046 adults (834 males and 1212 females; age range 21–75) from POLL and BCGR the serum level of major POPs such as of 15 most abundant PCBs congeners, dichlorodiphenyl-dichloroethylene (p,p'-DDE) and hexachlorobenzene (HCB) was estimated by high resolution gas chromatography. In addition, the data on thyroid volume by ultrasound and body mass index were obtained and serum level of thyroperoxidase and thyrotropin receptor antibodies as well as that of free thyroxine, total triiodothyronine, thyrotropin, thyroglobulin, fasting glucose and insulin, cholesterol and triglycerides was measured. Thus, a total of 13 adverse signs were defined and the interrelations between PCBs level and increasing number of subjects with increasing number of adverse signs were evaluated. RESULTS: Because of high correlation between major POPs (PCB, DDE and HCB), for this purpose the level of PCBs was considered as a marker also for the presence of DDE and HCB. Thus, if all data obtained from 2046 subjects were stratified according to quintiles of PCBs level, highly significant increase was found (p < 0.02 to 0.0000 by chi-sqauare) for the frequency of 8 among 13 signs, while the increase of one additional sign was slightly above significance limit and that in 4 other was not significant. Also the number of subjects with multiple adverse signs was significantly higher in POLL than in BCGR. For instance, in BCGR area (1038 subjects; median PCB level of 744 ng/g and 5%–95% range of 423 – 1329 ng/g serum lipids) there were 84 (8.1%) cases with 6 or 7 adverse health signs, while in POLL area (1008 subjects; median PCB level of 1892 ng/g; 5%–95% range of 685 – 9016 ng/g) the prevalence of respective cases was twice as high (195 cases = 19.3%; p < 0.001 by chi-square). For the subjects with the same PCB levels, but with 8 or 9 adverse signs the respective values were 22/1038 (2.1%) vs. 54/1008 (5.3%; p < 0.001). CONCLUSION: Significantly higher accumulation of adverse signs in subjects with high POPs level was found in POLL thus supporting the conclusion that POPs appear to increase the prevalence of several subclinical and overt thyroid and metabolic disorders. |
---|